gotosocial/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go

232 lines
6.1 KiB
Go
Raw Normal View History

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"sort"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
counts []uint64
count uint64
total N
min, max N
}
// newBuckets returns buckets with n bins.
func newBuckets[N int64 | float64](n int) *buckets[N] {
return &buckets[N]{counts: make([]uint64, n)}
}
func (b *buckets[N]) sum(value N) { b.total += value }
func (b *buckets[N]) bin(idx int, value N) {
b.counts[idx]++
b.count++
if value < b.min {
b.min = value
} else if value > b.max {
b.max = value
}
}
// histValues summarizes a set of measurements as an histValues with
// explicitly defined buckets.
type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
values map[attribute.Set]*buckets[N]
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64, noSum bool) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
// complete control over the fix.
b := make([]float64, len(bounds))
copy(b, bounds)
sort.Float64s(b)
return &histValues[N]{
noSum: noSum,
bounds: b,
values: make(map[attribute.Set]*buckets[N]),
}
}
// Aggregate records the measurement value, scoped by attr, and aggregates it
// into a histogram.
func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set) {
// This search will return an index in the range [0, len(s.bounds)], where
// it will return len(s.bounds) if value is greater than the last element
// of s.bounds. This aligns with the buckets in that the length of buckets
// is len(s.bounds)+1, with the last bucket representing:
// (s.bounds[len(s.bounds)-1], +∞).
idx := sort.SearchFloat64s(s.bounds, float64(value))
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
b, ok := s.values[attr]
if !ok {
// N+1 buckets. For example:
//
// bounds = [0, 5, 10]
//
// Then,
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
b = newBuckets[N](len(s.bounds) + 1)
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = value, value
s.values[attr] = b
}
b.bin(idx, value)
if !s.noSum {
b.sum(value)
}
}
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum),
noMinMax: noMinMax,
start: now(),
}
}
// histogram summarizes a set of measurements as an histogram with explicitly
// defined buckets.
type histogram[N int64 | float64] struct {
*histValues[N]
noMinMax bool
start time.Time
}
func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.DeltaTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
bounds := make([]float64, len(s.bounds))
copy(bounds, s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
for a, b := range s.values {
hDPts[i].Attributes = a
hDPts[i].StartTime = s.start
hDPts[i].Time = t
hDPts[i].Count = b.count
hDPts[i].Bounds = bounds
hDPts[i].BucketCounts = b.counts
if !s.noSum {
hDPts[i].Sum = b.total
}
if !s.noMinMax {
hDPts[i].Min = metricdata.NewExtrema(b.min)
hDPts[i].Max = metricdata.NewExtrema(b.max)
}
// Unused attribute sets do not report.
delete(s.values, a)
i++
}
// The delta collection cycle resets.
s.start = t
h.DataPoints = hDPts
*dest = h
return n
}
func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.CumulativeTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
bounds := make([]float64, len(s.bounds))
copy(bounds, s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
for a, b := range s.values {
// The HistogramDataPoint field values returned need to be copies of
// the buckets value as we will keep updating them.
//
// TODO (#3047): Making copies for bounds and counts incurs a large
// memory allocation footprint. Alternatives should be explored.
counts := make([]uint64, len(b.counts))
copy(counts, b.counts)
hDPts[i].Attributes = a
hDPts[i].StartTime = s.start
hDPts[i].Time = t
hDPts[i].Count = b.count
hDPts[i].Bounds = bounds
hDPts[i].BucketCounts = counts
if !s.noSum {
hDPts[i].Sum = b.total
}
if !s.noMinMax {
hDPts[i].Min = metricdata.NewExtrema(b.min)
hDPts[i].Max = metricdata.NewExtrema(b.max)
}
i++
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
}
h.DataPoints = hDPts
*dest = h
return n
}