2023-11-20 15:43:55 +00:00
|
|
|
// Copyright The OpenTelemetry Authors
|
2024-08-26 16:05:54 +00:00
|
|
|
// SPDX-License-Identifier: Apache-2.0
|
2023-11-20 15:43:55 +00:00
|
|
|
|
|
|
|
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
|
|
|
|
|
|
|
import (
|
|
|
|
"context"
|
|
|
|
"sync"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"go.opentelemetry.io/otel/attribute"
|
2024-03-11 14:34:34 +00:00
|
|
|
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
2023-11-20 15:43:55 +00:00
|
|
|
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
|
|
|
)
|
|
|
|
|
2024-03-11 14:34:34 +00:00
|
|
|
type sumValue[N int64 | float64] struct {
|
2024-08-26 16:05:54 +00:00
|
|
|
n N
|
|
|
|
res exemplar.FilteredReservoir[N]
|
|
|
|
attrs attribute.Set
|
2024-03-11 14:34:34 +00:00
|
|
|
}
|
|
|
|
|
2023-11-20 15:43:55 +00:00
|
|
|
// valueMap is the storage for sums.
|
|
|
|
type valueMap[N int64 | float64] struct {
|
|
|
|
sync.Mutex
|
2024-08-26 16:05:54 +00:00
|
|
|
newRes func() exemplar.FilteredReservoir[N]
|
2024-03-11 14:34:34 +00:00
|
|
|
limit limiter[sumValue[N]]
|
2024-08-26 16:05:54 +00:00
|
|
|
values map[attribute.Distinct]sumValue[N]
|
2023-11-20 15:43:55 +00:00
|
|
|
}
|
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
|
2024-03-11 14:34:34 +00:00
|
|
|
return &valueMap[N]{
|
|
|
|
newRes: r,
|
|
|
|
limit: newLimiter[sumValue[N]](limit),
|
2024-08-26 16:05:54 +00:00
|
|
|
values: make(map[attribute.Distinct]sumValue[N]),
|
2024-03-11 14:34:34 +00:00
|
|
|
}
|
2023-11-20 15:43:55 +00:00
|
|
|
}
|
|
|
|
|
2024-03-11 14:34:34 +00:00
|
|
|
func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
2023-11-20 15:43:55 +00:00
|
|
|
s.Lock()
|
2024-03-11 14:34:34 +00:00
|
|
|
defer s.Unlock()
|
|
|
|
|
|
|
|
attr := s.limit.Attributes(fltrAttr, s.values)
|
2024-08-26 16:05:54 +00:00
|
|
|
v, ok := s.values[attr.Equivalent()]
|
2024-03-11 14:34:34 +00:00
|
|
|
if !ok {
|
|
|
|
v.res = s.newRes()
|
|
|
|
}
|
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
v.attrs = attr
|
2024-03-11 14:34:34 +00:00
|
|
|
v.n += value
|
2024-08-26 16:05:54 +00:00
|
|
|
v.res.Offer(ctx, value, droppedAttr)
|
2024-03-11 14:34:34 +00:00
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
s.values[attr.Equivalent()] = v
|
2023-11-20 15:43:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// newSum returns an aggregator that summarizes a set of measurements as their
|
|
|
|
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
|
|
|
|
// the measurements were made in.
|
2024-08-26 16:05:54 +00:00
|
|
|
func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
|
2023-11-20 15:43:55 +00:00
|
|
|
return &sum[N]{
|
2024-03-11 14:34:34 +00:00
|
|
|
valueMap: newValueMap[N](limit, r),
|
2023-11-20 15:43:55 +00:00
|
|
|
monotonic: monotonic,
|
|
|
|
start: now(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// sum summarizes a set of measurements made as their arithmetic sum.
|
|
|
|
type sum[N int64 | float64] struct {
|
|
|
|
*valueMap[N]
|
|
|
|
|
|
|
|
monotonic bool
|
|
|
|
start time.Time
|
|
|
|
}
|
|
|
|
|
|
|
|
func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
|
|
|
|
t := now()
|
|
|
|
|
|
|
|
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
|
|
|
// use the zero-value sData and hope for better alignment next cycle.
|
|
|
|
sData, _ := (*dest).(metricdata.Sum[N])
|
|
|
|
sData.Temporality = metricdata.DeltaTemporality
|
|
|
|
sData.IsMonotonic = s.monotonic
|
|
|
|
|
|
|
|
s.Lock()
|
|
|
|
defer s.Unlock()
|
|
|
|
|
|
|
|
n := len(s.values)
|
|
|
|
dPts := reset(sData.DataPoints, n, n)
|
|
|
|
|
|
|
|
var i int
|
2024-08-26 16:05:54 +00:00
|
|
|
for _, val := range s.values {
|
|
|
|
dPts[i].Attributes = val.attrs
|
2023-11-20 15:43:55 +00:00
|
|
|
dPts[i].StartTime = s.start
|
|
|
|
dPts[i].Time = t
|
2024-03-11 14:34:34 +00:00
|
|
|
dPts[i].Value = val.n
|
2024-08-26 16:05:54 +00:00
|
|
|
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
|
2023-11-20 15:43:55 +00:00
|
|
|
i++
|
|
|
|
}
|
2024-08-26 16:05:54 +00:00
|
|
|
// Do not report stale values.
|
|
|
|
clear(s.values)
|
2023-11-20 15:43:55 +00:00
|
|
|
// The delta collection cycle resets.
|
|
|
|
s.start = t
|
|
|
|
|
|
|
|
sData.DataPoints = dPts
|
|
|
|
*dest = sData
|
|
|
|
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
|
|
|
|
func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
|
|
|
t := now()
|
|
|
|
|
|
|
|
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
|
|
|
// use the zero-value sData and hope for better alignment next cycle.
|
|
|
|
sData, _ := (*dest).(metricdata.Sum[N])
|
|
|
|
sData.Temporality = metricdata.CumulativeTemporality
|
|
|
|
sData.IsMonotonic = s.monotonic
|
|
|
|
|
|
|
|
s.Lock()
|
|
|
|
defer s.Unlock()
|
|
|
|
|
|
|
|
n := len(s.values)
|
|
|
|
dPts := reset(sData.DataPoints, n, n)
|
|
|
|
|
|
|
|
var i int
|
2024-08-26 16:05:54 +00:00
|
|
|
for _, value := range s.values {
|
|
|
|
dPts[i].Attributes = value.attrs
|
2023-11-20 15:43:55 +00:00
|
|
|
dPts[i].StartTime = s.start
|
|
|
|
dPts[i].Time = t
|
2024-03-11 14:34:34 +00:00
|
|
|
dPts[i].Value = value.n
|
2024-08-26 16:05:54 +00:00
|
|
|
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
|
2023-11-20 15:43:55 +00:00
|
|
|
// TODO (#3006): This will use an unbounded amount of memory if there
|
|
|
|
// are unbounded number of attribute sets being aggregated. Attribute
|
|
|
|
// sets that become "stale" need to be forgotten so this will not
|
|
|
|
// overload the system.
|
|
|
|
i++
|
|
|
|
}
|
|
|
|
|
|
|
|
sData.DataPoints = dPts
|
|
|
|
*dest = sData
|
|
|
|
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
|
|
|
|
// newPrecomputedSum returns an aggregator that summarizes a set of
|
2024-09-16 09:06:00 +00:00
|
|
|
// observations as their arithmetic sum. Each sum is scoped by attributes and
|
2023-11-20 15:43:55 +00:00
|
|
|
// the aggregation cycle the measurements were made in.
|
2024-08-26 16:05:54 +00:00
|
|
|
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
|
2023-11-20 15:43:55 +00:00
|
|
|
return &precomputedSum[N]{
|
2024-03-11 14:34:34 +00:00
|
|
|
valueMap: newValueMap[N](limit, r),
|
2023-11-20 15:43:55 +00:00
|
|
|
monotonic: monotonic,
|
|
|
|
start: now(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-09-16 09:06:00 +00:00
|
|
|
// precomputedSum summarizes a set of observations as their arithmetic sum.
|
2023-11-20 15:43:55 +00:00
|
|
|
type precomputedSum[N int64 | float64] struct {
|
|
|
|
*valueMap[N]
|
|
|
|
|
|
|
|
monotonic bool
|
|
|
|
start time.Time
|
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
reported map[attribute.Distinct]N
|
2023-11-20 15:43:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
|
|
|
|
t := now()
|
2024-08-26 16:05:54 +00:00
|
|
|
newReported := make(map[attribute.Distinct]N)
|
2023-11-20 15:43:55 +00:00
|
|
|
|
|
|
|
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
|
|
|
// use the zero-value sData and hope for better alignment next cycle.
|
|
|
|
sData, _ := (*dest).(metricdata.Sum[N])
|
|
|
|
sData.Temporality = metricdata.DeltaTemporality
|
|
|
|
sData.IsMonotonic = s.monotonic
|
|
|
|
|
|
|
|
s.Lock()
|
|
|
|
defer s.Unlock()
|
|
|
|
|
|
|
|
n := len(s.values)
|
|
|
|
dPts := reset(sData.DataPoints, n, n)
|
|
|
|
|
|
|
|
var i int
|
2024-08-26 16:05:54 +00:00
|
|
|
for key, value := range s.values {
|
|
|
|
delta := value.n - s.reported[key]
|
2023-11-20 15:43:55 +00:00
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
dPts[i].Attributes = value.attrs
|
2023-11-20 15:43:55 +00:00
|
|
|
dPts[i].StartTime = s.start
|
|
|
|
dPts[i].Time = t
|
|
|
|
dPts[i].Value = delta
|
2024-08-26 16:05:54 +00:00
|
|
|
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
|
2023-11-20 15:43:55 +00:00
|
|
|
|
2024-08-26 16:05:54 +00:00
|
|
|
newReported[key] = value.n
|
2023-11-20 15:43:55 +00:00
|
|
|
i++
|
|
|
|
}
|
2024-08-26 16:05:54 +00:00
|
|
|
// Unused attribute sets do not report.
|
|
|
|
clear(s.values)
|
2023-11-20 15:43:55 +00:00
|
|
|
s.reported = newReported
|
|
|
|
// The delta collection cycle resets.
|
|
|
|
s.start = t
|
|
|
|
|
|
|
|
sData.DataPoints = dPts
|
|
|
|
*dest = sData
|
|
|
|
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
|
|
|
|
func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
|
|
|
|
t := now()
|
|
|
|
|
|
|
|
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
|
|
|
// use the zero-value sData and hope for better alignment next cycle.
|
|
|
|
sData, _ := (*dest).(metricdata.Sum[N])
|
|
|
|
sData.Temporality = metricdata.CumulativeTemporality
|
|
|
|
sData.IsMonotonic = s.monotonic
|
|
|
|
|
|
|
|
s.Lock()
|
|
|
|
defer s.Unlock()
|
|
|
|
|
|
|
|
n := len(s.values)
|
|
|
|
dPts := reset(sData.DataPoints, n, n)
|
|
|
|
|
|
|
|
var i int
|
2024-08-26 16:05:54 +00:00
|
|
|
for _, val := range s.values {
|
|
|
|
dPts[i].Attributes = val.attrs
|
2023-11-20 15:43:55 +00:00
|
|
|
dPts[i].StartTime = s.start
|
|
|
|
dPts[i].Time = t
|
2024-03-11 14:34:34 +00:00
|
|
|
dPts[i].Value = val.n
|
2024-08-26 16:05:54 +00:00
|
|
|
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
|
2023-11-20 15:43:55 +00:00
|
|
|
|
|
|
|
i++
|
|
|
|
}
|
2024-08-26 16:05:54 +00:00
|
|
|
// Unused attribute sets do not report.
|
|
|
|
clear(s.values)
|
2023-11-20 15:43:55 +00:00
|
|
|
|
|
|
|
sData.DataPoints = dPts
|
|
|
|
*dest = sData
|
|
|
|
|
|
|
|
return n
|
|
|
|
}
|