mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-25 05:06:38 +00:00
363 lines
14 KiB
Go
363 lines
14 KiB
Go
|
// Copyright 2019 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"github.com/golang/geo/s1"
|
||
|
)
|
||
|
|
||
|
// minDistance implements distance interface to find closest distance types.
|
||
|
type minDistance s1.ChordAngle
|
||
|
|
||
|
func (m minDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) }
|
||
|
func (m minDistance) zero() distance { return minDistance(0) }
|
||
|
func (m minDistance) negative() distance { return minDistance(s1.NegativeChordAngle) }
|
||
|
func (m minDistance) infinity() distance { return minDistance(s1.InfChordAngle()) }
|
||
|
func (m minDistance) less(other distance) bool { return m.chordAngle() < other.chordAngle() }
|
||
|
func (m minDistance) sub(other distance) distance {
|
||
|
return minDistance(m.chordAngle() - other.chordAngle())
|
||
|
}
|
||
|
func (m minDistance) chordAngleBound() s1.ChordAngle {
|
||
|
return m.chordAngle().Expanded(m.chordAngle().MaxAngleError())
|
||
|
}
|
||
|
|
||
|
// updateDistance updates its own value if the other value is less() than it is,
|
||
|
// and reports if it updated.
|
||
|
func (m minDistance) updateDistance(dist distance) (distance, bool) {
|
||
|
if dist.less(m) {
|
||
|
m = minDistance(dist.chordAngle())
|
||
|
return m, true
|
||
|
}
|
||
|
return m, false
|
||
|
}
|
||
|
|
||
|
func (m minDistance) fromChordAngle(o s1.ChordAngle) distance {
|
||
|
return minDistance(o)
|
||
|
}
|
||
|
|
||
|
// MinDistanceToPointTarget is a type for computing the minimum distance to a Point.
|
||
|
type MinDistanceToPointTarget struct {
|
||
|
point Point
|
||
|
dist distance
|
||
|
}
|
||
|
|
||
|
// NewMinDistanceToPointTarget returns a new target for the given Point.
|
||
|
func NewMinDistanceToPointTarget(point Point) *MinDistanceToPointTarget {
|
||
|
m := minDistance(0)
|
||
|
return &MinDistanceToPointTarget{point: point, dist: &m}
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) capBound() Cap {
|
||
|
return CapFromCenterChordAngle(m.point, s1.ChordAngle(0))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
|
||
|
var ok bool
|
||
|
dist, ok = dist.updateDistance(minDistance(ChordAngleBetweenPoints(p, m.point)))
|
||
|
return dist, ok
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
|
||
|
if d, ok := UpdateMinDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok {
|
||
|
dist, _ = dist.updateDistance(minDistance(d))
|
||
|
return dist, true
|
||
|
}
|
||
|
return dist, false
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
|
||
|
var ok bool
|
||
|
dist, ok = dist.updateDistance(minDistance(cell.Distance(m.point)))
|
||
|
return dist, ok
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
|
||
|
// For furthest points, we visit the polygons whose interior contains
|
||
|
// the antipode of the target point. These are the polygons whose
|
||
|
// distance to the target is maxDistance.zero()
|
||
|
q := NewContainsPointQuery(index, VertexModelSemiOpen)
|
||
|
return q.visitContainingShapes(m.point, func(shape Shape) bool {
|
||
|
return v(shape, m.point)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
|
||
|
func (m *MinDistanceToPointTarget) maxBruteForceIndexSize() int { return 120 }
|
||
|
func (m *MinDistanceToPointTarget) distance() distance { return m.dist }
|
||
|
|
||
|
// ----------------------------------------------------------
|
||
|
|
||
|
// MinDistanceToEdgeTarget is a type for computing the minimum distance to an Edge.
|
||
|
type MinDistanceToEdgeTarget struct {
|
||
|
e Edge
|
||
|
dist distance
|
||
|
}
|
||
|
|
||
|
// NewMinDistanceToEdgeTarget returns a new target for the given Edge.
|
||
|
func NewMinDistanceToEdgeTarget(e Edge) *MinDistanceToEdgeTarget {
|
||
|
m := minDistance(0)
|
||
|
return &MinDistanceToEdgeTarget{e: e, dist: m}
|
||
|
}
|
||
|
|
||
|
// capBound returns a Cap that bounds the antipode of the target. (This
|
||
|
// is the set of points whose maxDistance to the target is maxDistance.zero)
|
||
|
func (m *MinDistanceToEdgeTarget) capBound() Cap {
|
||
|
// The following computes a radius equal to half the edge length in an
|
||
|
// efficient and numerically stable way.
|
||
|
d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1))
|
||
|
r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2))
|
||
|
return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}, s1.ChordAngleFromSquaredLength(r2))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
|
||
|
if d, ok := UpdateMinDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok {
|
||
|
dist, _ = dist.updateDistance(minDistance(d))
|
||
|
return dist, true
|
||
|
}
|
||
|
return dist, false
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
|
||
|
if d, ok := updateEdgePairMinDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok {
|
||
|
dist, _ = dist.updateDistance(minDistance(d))
|
||
|
return dist, true
|
||
|
}
|
||
|
return dist, false
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
|
||
|
return dist.updateDistance(minDistance(cell.DistanceToEdge(m.e.V0, m.e.V1)))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
|
||
|
// We test the center of the edge in order to ensure that edge targets AB
|
||
|
// and BA yield identical results (which is not guaranteed by the API but
|
||
|
// users might expect). Other options would be to test both endpoints, or
|
||
|
// return different results for AB and BA in some cases.
|
||
|
target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
|
||
|
return target.visitContainingShapes(index, v)
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
|
||
|
func (m *MinDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 60 }
|
||
|
func (m *MinDistanceToEdgeTarget) distance() distance { return m.dist }
|
||
|
|
||
|
// ----------------------------------------------------------
|
||
|
|
||
|
// MinDistanceToCellTarget is a type for computing the minimum distance to a Cell.
|
||
|
type MinDistanceToCellTarget struct {
|
||
|
cell Cell
|
||
|
dist distance
|
||
|
}
|
||
|
|
||
|
// NewMinDistanceToCellTarget returns a new target for the given Cell.
|
||
|
func NewMinDistanceToCellTarget(cell Cell) *MinDistanceToCellTarget {
|
||
|
m := minDistance(0)
|
||
|
return &MinDistanceToCellTarget{cell: cell, dist: m}
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellTarget) capBound() Cap {
|
||
|
return m.cell.CapBound()
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
|
||
|
return dist.updateDistance(minDistance(m.cell.Distance(p)))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
|
||
|
return dist.updateDistance(minDistance(m.cell.DistanceToEdge(edge.V0, edge.V1)))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
|
||
|
return dist.updateDistance(minDistance(m.cell.DistanceToCell(cell)))
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
|
||
|
// The simplest approach is simply to return the polygons that contain the
|
||
|
// cell center. Alternatively, if the index cell is smaller than the target
|
||
|
// cell then we could return all polygons that are present in the
|
||
|
// shapeIndexCell, but since the index is built conservatively this may
|
||
|
// include some polygons that don't quite intersect the cell. So we would
|
||
|
// either need to recheck for intersection more accurately, or weaken the
|
||
|
// VisitContainingShapes contract so that it only guarantees approximate
|
||
|
// intersection, neither of which seems like a good tradeoff.
|
||
|
target := NewMinDistanceToPointTarget(m.cell.Center())
|
||
|
return target.visitContainingShapes(index, v)
|
||
|
}
|
||
|
func (m *MinDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
|
||
|
func (m *MinDistanceToCellTarget) maxBruteForceIndexSize() int { return 30 }
|
||
|
func (m *MinDistanceToCellTarget) distance() distance { return m.dist }
|
||
|
|
||
|
// ----------------------------------------------------------
|
||
|
|
||
|
/*
|
||
|
// MinDistanceToCellUnionTarget is a type for computing the minimum distance to a CellUnion.
|
||
|
type MinDistanceToCellUnionTarget struct {
|
||
|
cu CellUnion
|
||
|
query *ClosestCellQuery
|
||
|
dist distance
|
||
|
}
|
||
|
|
||
|
// NewMinDistanceToCellUnionTarget returns a new target for the given CellUnion.
|
||
|
func NewMinDistanceToCellUnionTarget(cu CellUnion) *MinDistanceToCellUnionTarget {
|
||
|
m := minDistance(0)
|
||
|
return &MinDistanceToCellUnionTarget{cu: cu, dist: m}
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellUnionTarget) capBound() Cap {
|
||
|
return m.cu.CapBound()
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellUnionTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
|
||
|
m.query.opts.DistanceLimit = dist.chordAngle()
|
||
|
target := NewMinDistanceToPointTarget(p)
|
||
|
r := m.query.findEdge(target)
|
||
|
if r.ShapeID < 0 {
|
||
|
return dist, false
|
||
|
}
|
||
|
return minDistance(r.Distance), true
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToCellUnionTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
|
||
|
// We test the center of the edge in order to ensure that edge targets AB
|
||
|
// and BA yield identical results (which is not guaranteed by the API but
|
||
|
// users might expect). Other options would be to test both endpoints, or
|
||
|
// return different results for AB and BA in some cases.
|
||
|
target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
|
||
|
return target.visitContainingShapes(index, v)
|
||
|
}
|
||
|
func (m *MinDistanceToCellUnionTarget) setMaxError(maxErr s1.ChordAngle) bool {
|
||
|
m.query.opts.MaxError = maxErr
|
||
|
return true
|
||
|
}
|
||
|
func (m *MinDistanceToCellUnionTarget) maxBruteForceIndexSize() int { return 30 }
|
||
|
func (m *MinDistanceToCellUnionTarget) distance() distance { return m.dist }
|
||
|
*/
|
||
|
|
||
|
// ----------------------------------------------------------
|
||
|
|
||
|
// MinDistanceToShapeIndexTarget is a type for computing the minimum distance to a ShapeIndex.
|
||
|
type MinDistanceToShapeIndexTarget struct {
|
||
|
index *ShapeIndex
|
||
|
query *EdgeQuery
|
||
|
dist distance
|
||
|
}
|
||
|
|
||
|
// NewMinDistanceToShapeIndexTarget returns a new target for the given ShapeIndex.
|
||
|
func NewMinDistanceToShapeIndexTarget(index *ShapeIndex) *MinDistanceToShapeIndexTarget {
|
||
|
m := minDistance(0)
|
||
|
return &MinDistanceToShapeIndexTarget{
|
||
|
index: index,
|
||
|
dist: m,
|
||
|
query: NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions()),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
|
||
|
// TODO(roberts): Depends on ShapeIndexRegion existing.
|
||
|
// c := makeS2ShapeIndexRegion(m.index).CapBound()
|
||
|
// return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius())
|
||
|
panic("not implemented yet")
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
|
||
|
m.query.opts.distanceLimit = dist.chordAngle()
|
||
|
target := NewMinDistanceToPointTarget(p)
|
||
|
r := m.query.findEdge(target, m.query.opts)
|
||
|
if r.shapeID < 0 {
|
||
|
return dist, false
|
||
|
}
|
||
|
return r.distance, true
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
|
||
|
m.query.opts.distanceLimit = dist.chordAngle()
|
||
|
target := NewMinDistanceToEdgeTarget(edge)
|
||
|
r := m.query.findEdge(target, m.query.opts)
|
||
|
if r.shapeID < 0 {
|
||
|
return dist, false
|
||
|
}
|
||
|
return r.distance, true
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
|
||
|
m.query.opts.distanceLimit = dist.chordAngle()
|
||
|
target := NewMinDistanceToCellTarget(cell)
|
||
|
r := m.query.findEdge(target, m.query.opts)
|
||
|
if r.shapeID < 0 {
|
||
|
return dist, false
|
||
|
}
|
||
|
return r.distance, true
|
||
|
}
|
||
|
|
||
|
// For target types consisting of multiple connected components (such as this one),
|
||
|
// this method should return the polygons containing the antipodal reflection of
|
||
|
// *any* connected component. (It is sufficient to test containment of one vertex per
|
||
|
// connected component, since this allows us to also return any polygon whose
|
||
|
// boundary has distance.zero() to the target.)
|
||
|
func (m *MinDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
|
||
|
// It is sufficient to find the set of chain starts in the target index
|
||
|
// (i.e., one vertex per connected component of edges) that are contained by
|
||
|
// the query index, except for one special case to handle full polygons.
|
||
|
//
|
||
|
// TODO(roberts): Do this by merge-joining the two ShapeIndexes.
|
||
|
for _, shape := range m.index.shapes {
|
||
|
numChains := shape.NumChains()
|
||
|
// Shapes that don't have any edges require a special case (below).
|
||
|
testedPoint := false
|
||
|
for c := 0; c < numChains; c++ {
|
||
|
chain := shape.Chain(c)
|
||
|
if chain.Length == 0 {
|
||
|
continue
|
||
|
}
|
||
|
testedPoint = true
|
||
|
target := NewMinDistanceToPointTarget(shape.ChainEdge(c, 0).V0)
|
||
|
if !target.visitContainingShapes(index, v) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
if !testedPoint {
|
||
|
// Special case to handle full polygons.
|
||
|
ref := shape.ReferencePoint()
|
||
|
if !ref.Contained {
|
||
|
continue
|
||
|
}
|
||
|
target := NewMinDistanceToPointTarget(ref.Point)
|
||
|
if !target.visitContainingShapes(index, v) {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
func (m *MinDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool {
|
||
|
m.query.opts.maxError = maxErr
|
||
|
return true
|
||
|
}
|
||
|
func (m *MinDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 25 }
|
||
|
func (m *MinDistanceToShapeIndexTarget) distance() distance { return m.dist }
|
||
|
func (m *MinDistanceToShapeIndexTarget) setIncludeInteriors(b bool) {
|
||
|
m.query.opts.includeInteriors = b
|
||
|
}
|
||
|
func (m *MinDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b }
|
||
|
|
||
|
// TODO(roberts): Remaining methods
|
||
|
//
|
||
|
// func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
|
||
|
// CellUnionTarget
|