gotosocial/vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go

234 lines
6.1 KiB
Go
Raw Normal View History

// Copyright The OpenTelemetry Authors
2024-08-26 16:05:54 +00:00
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
2024-08-26 16:05:54 +00:00
"slices"
"sort"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
2024-08-26 16:05:54 +00:00
attrs attribute.Set
res exemplar.FilteredReservoir[N]
counts []uint64
count uint64
total N
min, max N
}
// newBuckets returns buckets with n bins.
2024-08-26 16:05:54 +00:00
func newBuckets[N int64 | float64](attrs attribute.Set, n int) *buckets[N] {
return &buckets[N]{attrs: attrs, counts: make([]uint64, n)}
}
func (b *buckets[N]) sum(value N) { b.total += value }
func (b *buckets[N]) bin(idx int, value N) {
b.counts[idx]++
b.count++
if value < b.min {
b.min = value
} else if value > b.max {
b.max = value
}
}
// histValues summarizes a set of measurements as an histValues with
// explicitly defined buckets.
type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
2024-08-26 16:05:54 +00:00
newRes func() exemplar.FilteredReservoir[N]
limit limiter[*buckets[N]]
2024-08-26 16:05:54 +00:00
values map[attribute.Distinct]*buckets[N]
valuesMu sync.Mutex
}
2024-08-26 16:05:54 +00:00
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
// complete control over the fix.
2024-08-26 16:05:54 +00:00
b := slices.Clone(bounds)
slices.Sort(b)
return &histValues[N]{
noSum: noSum,
bounds: b,
newRes: r,
limit: newLimiter[*buckets[N]](limit),
2024-08-26 16:05:54 +00:00
values: make(map[attribute.Distinct]*buckets[N]),
}
}
// Aggregate records the measurement value, scoped by attr, and aggregates it
// into a histogram.
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
// This search will return an index in the range [0, len(s.bounds)], where
// it will return len(s.bounds) if value is greater than the last element
// of s.bounds. This aligns with the buckets in that the length of buckets
// is len(s.bounds)+1, with the last bucket representing:
// (s.bounds[len(s.bounds)-1], +∞).
idx := sort.SearchFloat64s(s.bounds, float64(value))
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
attr := s.limit.Attributes(fltrAttr, s.values)
2024-08-26 16:05:54 +00:00
b, ok := s.values[attr.Equivalent()]
if !ok {
// N+1 buckets. For example:
//
// bounds = [0, 5, 10]
//
// Then,
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
2024-08-26 16:05:54 +00:00
b = newBuckets[N](attr, len(s.bounds)+1)
b.res = s.newRes()
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = value, value
2024-08-26 16:05:54 +00:00
s.values[attr.Equivalent()] = b
}
b.bin(idx, value)
if !s.noSum {
b.sum(value)
}
2024-08-26 16:05:54 +00:00
b.res.Offer(ctx, value, droppedAttr)
}
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
2024-08-26 16:05:54 +00:00
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum, limit, r),
noMinMax: noMinMax,
start: now(),
}
}
// histogram summarizes a set of measurements as an histogram with explicitly
// defined buckets.
type histogram[N int64 | float64] struct {
*histValues[N]
noMinMax bool
start time.Time
}
func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.DeltaTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
2024-08-26 16:05:54 +00:00
bounds := slices.Clone(s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
2024-08-26 16:05:54 +00:00
for _, val := range s.values {
hDPts[i].Attributes = val.attrs
hDPts[i].StartTime = s.start
hDPts[i].Time = t
2024-08-26 16:05:54 +00:00
hDPts[i].Count = val.count
hDPts[i].Bounds = bounds
2024-08-26 16:05:54 +00:00
hDPts[i].BucketCounts = val.counts
if !s.noSum {
2024-08-26 16:05:54 +00:00
hDPts[i].Sum = val.total
}
if !s.noMinMax {
2024-08-26 16:05:54 +00:00
hDPts[i].Min = metricdata.NewExtrema(val.min)
hDPts[i].Max = metricdata.NewExtrema(val.max)
}
2024-08-26 16:05:54 +00:00
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
i++
}
2024-08-26 16:05:54 +00:00
// Unused attribute sets do not report.
clear(s.values)
// The delta collection cycle resets.
s.start = t
h.DataPoints = hDPts
*dest = h
return n
}
func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.CumulativeTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
2024-08-26 16:05:54 +00:00
bounds := slices.Clone(s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
2024-08-26 16:05:54 +00:00
for _, val := range s.values {
hDPts[i].Attributes = val.attrs
hDPts[i].StartTime = s.start
hDPts[i].Time = t
hDPts[i].Count = val.count
hDPts[i].Bounds = bounds
// The HistogramDataPoint field values returned need to be copies of
// the buckets value as we will keep updating them.
//
// TODO (#3047): Making copies for bounds and counts incurs a large
// memory allocation footprint. Alternatives should be explored.
2024-08-26 16:05:54 +00:00
hDPts[i].BucketCounts = slices.Clone(val.counts)
if !s.noSum {
2024-08-26 16:05:54 +00:00
hDPts[i].Sum = val.total
}
if !s.noMinMax {
2024-08-26 16:05:54 +00:00
hDPts[i].Min = metricdata.NewExtrema(val.min)
hDPts[i].Max = metricdata.NewExtrema(val.max)
}
2024-08-26 16:05:54 +00:00
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
i++
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
}
h.DataPoints = hDPts
*dest = h
return n
}