mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-27 06:06:38 +00:00
702 lines
26 KiB
Go
702 lines
26 KiB
Go
|
// Copyright 2016 Google Inc. All rights reserved.
|
|||
|
//
|
|||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
// you may not use this file except in compliance with the License.
|
|||
|
// You may obtain a copy of the License at
|
|||
|
//
|
|||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
//
|
|||
|
// Unless required by applicable law or agreed to in writing, software
|
|||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
// See the License for the specific language governing permissions and
|
|||
|
// limitations under the License.
|
|||
|
|
|||
|
package s2
|
|||
|
|
|||
|
// This file contains various predicates that are guaranteed to produce
|
|||
|
// correct, consistent results. They are also relatively efficient. This is
|
|||
|
// achieved by computing conservative error bounds and falling back to high
|
|||
|
// precision or even exact arithmetic when the result is uncertain. Such
|
|||
|
// predicates are useful in implementing robust algorithms.
|
|||
|
//
|
|||
|
// See also EdgeCrosser, which implements various exact
|
|||
|
// edge-crossing predicates more efficiently than can be done here.
|
|||
|
|
|||
|
import (
|
|||
|
"math"
|
|||
|
"math/big"
|
|||
|
|
|||
|
"github.com/golang/geo/r3"
|
|||
|
"github.com/golang/geo/s1"
|
|||
|
)
|
|||
|
|
|||
|
const (
|
|||
|
// If any other machine architectures need to be suppported, these next three
|
|||
|
// values will need to be updated.
|
|||
|
|
|||
|
// epsilon is a small number that represents a reasonable level of noise between two
|
|||
|
// values that can be considered to be equal.
|
|||
|
epsilon = 1e-15
|
|||
|
// dblEpsilon is a smaller number for values that require more precision.
|
|||
|
// This is the C++ DBL_EPSILON equivalent.
|
|||
|
dblEpsilon = 2.220446049250313e-16
|
|||
|
// dblError is the C++ value for S2 rounding_epsilon().
|
|||
|
dblError = 1.110223024625156e-16
|
|||
|
|
|||
|
// maxDeterminantError is the maximum error in computing (AxB).C where all vectors
|
|||
|
// are unit length. Using standard inequalities, it can be shown that
|
|||
|
//
|
|||
|
// fl(AxB) = AxB + D where |D| <= (|AxB| + (2/sqrt(3))*|A|*|B|) * e
|
|||
|
//
|
|||
|
// where "fl()" denotes a calculation done in floating-point arithmetic,
|
|||
|
// |x| denotes either absolute value or the L2-norm as appropriate, and
|
|||
|
// e is a reasonably small value near the noise level of floating point
|
|||
|
// number accuracy. Similarly,
|
|||
|
//
|
|||
|
// fl(B.C) = B.C + d where |d| <= (|B.C| + 2*|B|*|C|) * e .
|
|||
|
//
|
|||
|
// Applying these bounds to the unit-length vectors A,B,C and neglecting
|
|||
|
// relative error (which does not affect the sign of the result), we get
|
|||
|
//
|
|||
|
// fl((AxB).C) = (AxB).C + d where |d| <= (3 + 2/sqrt(3)) * e
|
|||
|
maxDeterminantError = 1.8274 * dblEpsilon
|
|||
|
|
|||
|
// detErrorMultiplier is the factor to scale the magnitudes by when checking
|
|||
|
// for the sign of set of points with certainty. Using a similar technique to
|
|||
|
// the one used for maxDeterminantError, the error is at most:
|
|||
|
//
|
|||
|
// |d| <= (3 + 6/sqrt(3)) * |A-C| * |B-C| * e
|
|||
|
//
|
|||
|
// If the determinant magnitude is larger than this value then we know
|
|||
|
// its sign with certainty.
|
|||
|
detErrorMultiplier = 3.2321 * dblEpsilon
|
|||
|
)
|
|||
|
|
|||
|
// Direction is an indication of the ordering of a set of points.
|
|||
|
type Direction int
|
|||
|
|
|||
|
// These are the three options for the direction of a set of points.
|
|||
|
const (
|
|||
|
Clockwise Direction = -1
|
|||
|
Indeterminate Direction = 0
|
|||
|
CounterClockwise Direction = 1
|
|||
|
)
|
|||
|
|
|||
|
// newBigFloat constructs a new big.Float with maximum precision.
|
|||
|
func newBigFloat() *big.Float { return new(big.Float).SetPrec(big.MaxPrec) }
|
|||
|
|
|||
|
// Sign returns true if the points A, B, C are strictly counterclockwise,
|
|||
|
// and returns false if the points are clockwise or collinear (i.e. if they are all
|
|||
|
// contained on some great circle).
|
|||
|
//
|
|||
|
// Due to numerical errors, situations may arise that are mathematically
|
|||
|
// impossible, e.g. ABC may be considered strictly CCW while BCA is not.
|
|||
|
// However, the implementation guarantees the following:
|
|||
|
//
|
|||
|
// If Sign(a,b,c), then !Sign(c,b,a) for all a,b,c.
|
|||
|
func Sign(a, b, c Point) bool {
|
|||
|
// NOTE(dnadasi): In the C++ API the equivalent method here was known as "SimpleSign".
|
|||
|
|
|||
|
// We compute the signed volume of the parallelepiped ABC. The usual
|
|||
|
// formula for this is (A ⨯ B) · C, but we compute it here using (C ⨯ A) · B
|
|||
|
// in order to ensure that ABC and CBA are not both CCW. This follows
|
|||
|
// from the following identities (which are true numerically, not just
|
|||
|
// mathematically):
|
|||
|
//
|
|||
|
// (1) x ⨯ y == -(y ⨯ x)
|
|||
|
// (2) -x · y == -(x · y)
|
|||
|
return c.Cross(a.Vector).Dot(b.Vector) > 0
|
|||
|
}
|
|||
|
|
|||
|
// RobustSign returns a Direction representing the ordering of the points.
|
|||
|
// CounterClockwise is returned if the points are in counter-clockwise order,
|
|||
|
// Clockwise for clockwise, and Indeterminate if any two points are the same (collinear),
|
|||
|
// or the sign could not completely be determined.
|
|||
|
//
|
|||
|
// This function has additional logic to make sure that the above properties hold even
|
|||
|
// when the three points are coplanar, and to deal with the limitations of
|
|||
|
// floating-point arithmetic.
|
|||
|
//
|
|||
|
// RobustSign satisfies the following conditions:
|
|||
|
//
|
|||
|
// (1) RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a
|
|||
|
// (2) RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c
|
|||
|
// (3) RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c
|
|||
|
//
|
|||
|
// In other words:
|
|||
|
//
|
|||
|
// (1) The result is Indeterminate if and only if two points are the same.
|
|||
|
// (2) Rotating the order of the arguments does not affect the result.
|
|||
|
// (3) Exchanging any two arguments inverts the result.
|
|||
|
//
|
|||
|
// On the other hand, note that it is not true in general that
|
|||
|
// RobustSign(-a,b,c) == -RobustSign(a,b,c), or any similar identities
|
|||
|
// involving antipodal points.
|
|||
|
func RobustSign(a, b, c Point) Direction {
|
|||
|
sign := triageSign(a, b, c)
|
|||
|
if sign == Indeterminate {
|
|||
|
sign = expensiveSign(a, b, c)
|
|||
|
}
|
|||
|
return sign
|
|||
|
}
|
|||
|
|
|||
|
// stableSign reports the direction sign of the points in a numerically stable way.
|
|||
|
// Unlike triageSign, this method can usually compute the correct determinant sign
|
|||
|
// even when all three points are as collinear as possible. For example if three
|
|||
|
// points are spaced 1km apart along a random line on the Earth's surface using
|
|||
|
// the nearest representable points, there is only a 0.4% chance that this method
|
|||
|
// will not be able to find the determinant sign. The probability of failure
|
|||
|
// decreases as the points get closer together; if the collinear points are 1 meter
|
|||
|
// apart, the failure rate drops to 0.0004%.
|
|||
|
//
|
|||
|
// This method could be extended to also handle nearly-antipodal points, but antipodal
|
|||
|
// points are rare in practice so it seems better to simply fall back to
|
|||
|
// exact arithmetic in that case.
|
|||
|
func stableSign(a, b, c Point) Direction {
|
|||
|
ab := b.Sub(a.Vector)
|
|||
|
ab2 := ab.Norm2()
|
|||
|
bc := c.Sub(b.Vector)
|
|||
|
bc2 := bc.Norm2()
|
|||
|
ca := a.Sub(c.Vector)
|
|||
|
ca2 := ca.Norm2()
|
|||
|
|
|||
|
// Now compute the determinant ((A-C)x(B-C)).C, where the vertices have been
|
|||
|
// cyclically permuted if necessary so that AB is the longest edge. (This
|
|||
|
// minimizes the magnitude of cross product.) At the same time we also
|
|||
|
// compute the maximum error in the determinant.
|
|||
|
|
|||
|
// The two shortest edges, pointing away from their common point.
|
|||
|
var e1, e2, op r3.Vector
|
|||
|
if ab2 >= bc2 && ab2 >= ca2 {
|
|||
|
// AB is the longest edge.
|
|||
|
e1, e2, op = ca, bc, c.Vector
|
|||
|
} else if bc2 >= ca2 {
|
|||
|
// BC is the longest edge.
|
|||
|
e1, e2, op = ab, ca, a.Vector
|
|||
|
} else {
|
|||
|
// CA is the longest edge.
|
|||
|
e1, e2, op = bc, ab, b.Vector
|
|||
|
}
|
|||
|
|
|||
|
det := -e1.Cross(e2).Dot(op)
|
|||
|
maxErr := detErrorMultiplier * math.Sqrt(e1.Norm2()*e2.Norm2())
|
|||
|
|
|||
|
// If the determinant isn't zero, within maxErr, we know definitively the point ordering.
|
|||
|
if det > maxErr {
|
|||
|
return CounterClockwise
|
|||
|
}
|
|||
|
if det < -maxErr {
|
|||
|
return Clockwise
|
|||
|
}
|
|||
|
return Indeterminate
|
|||
|
}
|
|||
|
|
|||
|
// triageSign returns the direction sign of the points. It returns Indeterminate if two
|
|||
|
// points are identical or the result is uncertain. Uncertain cases can be resolved, if
|
|||
|
// desired, by calling expensiveSign.
|
|||
|
//
|
|||
|
// The purpose of this method is to allow additional cheap tests to be done without
|
|||
|
// calling expensiveSign.
|
|||
|
func triageSign(a, b, c Point) Direction {
|
|||
|
det := a.Cross(b.Vector).Dot(c.Vector)
|
|||
|
if det > maxDeterminantError {
|
|||
|
return CounterClockwise
|
|||
|
}
|
|||
|
if det < -maxDeterminantError {
|
|||
|
return Clockwise
|
|||
|
}
|
|||
|
return Indeterminate
|
|||
|
}
|
|||
|
|
|||
|
// expensiveSign reports the direction sign of the points. It returns Indeterminate
|
|||
|
// if two of the input points are the same. It uses multiple-precision arithmetic
|
|||
|
// to ensure that its results are always self-consistent.
|
|||
|
func expensiveSign(a, b, c Point) Direction {
|
|||
|
// Return Indeterminate if and only if two points are the same.
|
|||
|
// This ensures RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a.
|
|||
|
// ie. Property 1 of RobustSign.
|
|||
|
if a == b || b == c || c == a {
|
|||
|
return Indeterminate
|
|||
|
}
|
|||
|
|
|||
|
// Next we try recomputing the determinant still using floating-point
|
|||
|
// arithmetic but in a more precise way. This is more expensive than the
|
|||
|
// simple calculation done by triageSign, but it is still *much* cheaper
|
|||
|
// than using arbitrary-precision arithmetic. This optimization is able to
|
|||
|
// compute the correct determinant sign in virtually all cases except when
|
|||
|
// the three points are truly collinear (e.g., three points on the equator).
|
|||
|
detSign := stableSign(a, b, c)
|
|||
|
if detSign != Indeterminate {
|
|||
|
return detSign
|
|||
|
}
|
|||
|
|
|||
|
// Otherwise fall back to exact arithmetic and symbolic permutations.
|
|||
|
return exactSign(a, b, c, true)
|
|||
|
}
|
|||
|
|
|||
|
// exactSign reports the direction sign of the points computed using high-precision
|
|||
|
// arithmetic and/or symbolic perturbations.
|
|||
|
func exactSign(a, b, c Point, perturb bool) Direction {
|
|||
|
// Sort the three points in lexicographic order, keeping track of the sign
|
|||
|
// of the permutation. (Each exchange inverts the sign of the determinant.)
|
|||
|
permSign := CounterClockwise
|
|||
|
pa := &a
|
|||
|
pb := &b
|
|||
|
pc := &c
|
|||
|
if pa.Cmp(pb.Vector) > 0 {
|
|||
|
pa, pb = pb, pa
|
|||
|
permSign = -permSign
|
|||
|
}
|
|||
|
if pb.Cmp(pc.Vector) > 0 {
|
|||
|
pb, pc = pc, pb
|
|||
|
permSign = -permSign
|
|||
|
}
|
|||
|
if pa.Cmp(pb.Vector) > 0 {
|
|||
|
pa, pb = pb, pa
|
|||
|
permSign = -permSign
|
|||
|
}
|
|||
|
|
|||
|
// Construct multiple-precision versions of the sorted points and compute
|
|||
|
// their precise 3x3 determinant.
|
|||
|
xa := r3.PreciseVectorFromVector(pa.Vector)
|
|||
|
xb := r3.PreciseVectorFromVector(pb.Vector)
|
|||
|
xc := r3.PreciseVectorFromVector(pc.Vector)
|
|||
|
xbCrossXc := xb.Cross(xc)
|
|||
|
det := xa.Dot(xbCrossXc)
|
|||
|
|
|||
|
// The precision of big.Float is high enough that the result should always
|
|||
|
// be exact enough (no rounding was performed).
|
|||
|
|
|||
|
// If the exact determinant is non-zero, we're done.
|
|||
|
detSign := Direction(det.Sign())
|
|||
|
if detSign == Indeterminate && perturb {
|
|||
|
// Otherwise, we need to resort to symbolic perturbations to resolve the
|
|||
|
// sign of the determinant.
|
|||
|
detSign = symbolicallyPerturbedSign(xa, xb, xc, xbCrossXc)
|
|||
|
}
|
|||
|
return permSign * detSign
|
|||
|
}
|
|||
|
|
|||
|
// symbolicallyPerturbedSign reports the sign of the determinant of three points
|
|||
|
// A, B, C under a model where every possible Point is slightly perturbed by
|
|||
|
// a unique infinitesmal amount such that no three perturbed points are
|
|||
|
// collinear and no four points are coplanar. The perturbations are so small
|
|||
|
// that they do not change the sign of any determinant that was non-zero
|
|||
|
// before the perturbations, and therefore can be safely ignored unless the
|
|||
|
// determinant of three points is exactly zero (using multiple-precision
|
|||
|
// arithmetic). This returns CounterClockwise or Clockwise according to the
|
|||
|
// sign of the determinant after the symbolic perturbations are taken into account.
|
|||
|
//
|
|||
|
// Since the symbolic perturbation of a given point is fixed (i.e., the
|
|||
|
// perturbation is the same for all calls to this method and does not depend
|
|||
|
// on the other two arguments), the results of this method are always
|
|||
|
// self-consistent. It will never return results that would correspond to an
|
|||
|
// impossible configuration of non-degenerate points.
|
|||
|
//
|
|||
|
// This requires that the 3x3 determinant of A, B, C must be exactly zero.
|
|||
|
// And the points must be distinct, with A < B < C in lexicographic order.
|
|||
|
//
|
|||
|
// Reference:
|
|||
|
// "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on
|
|||
|
// Graphics, 1990).
|
|||
|
//
|
|||
|
func symbolicallyPerturbedSign(a, b, c, bCrossC r3.PreciseVector) Direction {
|
|||
|
// This method requires that the points are sorted in lexicographically
|
|||
|
// increasing order. This is because every possible Point has its own
|
|||
|
// symbolic perturbation such that if A < B then the symbolic perturbation
|
|||
|
// for A is much larger than the perturbation for B.
|
|||
|
//
|
|||
|
// Alternatively, we could sort the points in this method and keep track of
|
|||
|
// the sign of the permutation, but it is more efficient to do this before
|
|||
|
// converting the inputs to the multi-precision representation, and this
|
|||
|
// also lets us re-use the result of the cross product B x C.
|
|||
|
//
|
|||
|
// Every input coordinate x[i] is assigned a symbolic perturbation dx[i].
|
|||
|
// We then compute the sign of the determinant of the perturbed points,
|
|||
|
// i.e.
|
|||
|
// | a.X+da.X a.Y+da.Y a.Z+da.Z |
|
|||
|
// | b.X+db.X b.Y+db.Y b.Z+db.Z |
|
|||
|
// | c.X+dc.X c.Y+dc.Y c.Z+dc.Z |
|
|||
|
//
|
|||
|
// The perturbations are chosen such that
|
|||
|
//
|
|||
|
// da.Z > da.Y > da.X > db.Z > db.Y > db.X > dc.Z > dc.Y > dc.X
|
|||
|
//
|
|||
|
// where each perturbation is so much smaller than the previous one that we
|
|||
|
// don't even need to consider it unless the coefficients of all previous
|
|||
|
// perturbations are zero. In fact, it is so small that we don't need to
|
|||
|
// consider it unless the coefficient of all products of the previous
|
|||
|
// perturbations are zero. For example, we don't need to consider the
|
|||
|
// coefficient of db.Y unless the coefficient of db.Z *da.X is zero.
|
|||
|
//
|
|||
|
// The follow code simply enumerates the coefficients of the perturbations
|
|||
|
// (and products of perturbations) that appear in the determinant above, in
|
|||
|
// order of decreasing perturbation magnitude. The first non-zero
|
|||
|
// coefficient determines the sign of the result. The easiest way to
|
|||
|
// enumerate the coefficients in the correct order is to pretend that each
|
|||
|
// perturbation is some tiny value "eps" raised to a power of two:
|
|||
|
//
|
|||
|
// eps** 1 2 4 8 16 32 64 128 256
|
|||
|
// da.Z da.Y da.X db.Z db.Y db.X dc.Z dc.Y dc.X
|
|||
|
//
|
|||
|
// Essentially we can then just count in binary and test the corresponding
|
|||
|
// subset of perturbations at each step. So for example, we must test the
|
|||
|
// coefficient of db.Z*da.X before db.Y because eps**12 > eps**16.
|
|||
|
//
|
|||
|
// Of course, not all products of these perturbations appear in the
|
|||
|
// determinant above, since the determinant only contains the products of
|
|||
|
// elements in distinct rows and columns. Thus we don't need to consider
|
|||
|
// da.Z*da.Y, db.Y *da.Y, etc. Furthermore, sometimes different pairs of
|
|||
|
// perturbations have the same coefficient in the determinant; for example,
|
|||
|
// da.Y*db.X and db.Y*da.X have the same coefficient (c.Z). Therefore
|
|||
|
// we only need to test this coefficient the first time we encounter it in
|
|||
|
// the binary order above (which will be db.Y*da.X).
|
|||
|
//
|
|||
|
// The sequence of tests below also appears in Table 4-ii of the paper
|
|||
|
// referenced above, if you just want to look it up, with the following
|
|||
|
// translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3]. Also note that
|
|||
|
// some of the signs are different because the opposite cross product is
|
|||
|
// used (e.g., B x C rather than C x B).
|
|||
|
|
|||
|
detSign := bCrossC.Z.Sign() // da.Z
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = bCrossC.Y.Sign() // da.Y
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = bCrossC.X.Sign() // da.X
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
|
|||
|
detSign = newBigFloat().Sub(newBigFloat().Mul(c.X, a.Y), newBigFloat().Mul(c.Y, a.X)).Sign() // db.Z
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = c.X.Sign() // db.Z * da.Y
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = -(c.Y.Sign()) // db.Z * da.X
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
|
|||
|
detSign = newBigFloat().Sub(newBigFloat().Mul(c.Z, a.X), newBigFloat().Mul(c.X, a.Z)).Sign() // db.Y
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = c.Z.Sign() // db.Y * da.X
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
|
|||
|
// The following test is listed in the paper, but it is redundant because
|
|||
|
// the previous tests guarantee that C == (0, 0, 0).
|
|||
|
// (c.Y*a.Z - c.Z*a.Y).Sign() // db.X
|
|||
|
|
|||
|
detSign = newBigFloat().Sub(newBigFloat().Mul(a.X, b.Y), newBigFloat().Mul(a.Y, b.X)).Sign() // dc.Z
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = -(b.X.Sign()) // dc.Z * da.Y
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = b.Y.Sign() // dc.Z * da.X
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
detSign = a.X.Sign() // dc.Z * db.Y
|
|||
|
if detSign != 0 {
|
|||
|
return Direction(detSign)
|
|||
|
}
|
|||
|
return CounterClockwise // dc.Z * db.Y * da.X
|
|||
|
}
|
|||
|
|
|||
|
// CompareDistances returns -1, 0, or +1 according to whether AX < BX, A == B,
|
|||
|
// or AX > BX respectively. Distances are measured with respect to the positions
|
|||
|
// of X, A, and B as though they were reprojected to lie exactly on the surface of
|
|||
|
// the unit sphere. Furthermore, this method uses symbolic perturbations to
|
|||
|
// ensure that the result is non-zero whenever A != B, even when AX == BX
|
|||
|
// exactly, or even when A and B project to the same point on the sphere.
|
|||
|
// Such results are guaranteed to be self-consistent, i.e. if AB < BC and
|
|||
|
// BC < AC, then AB < AC.
|
|||
|
func CompareDistances(x, a, b Point) int {
|
|||
|
// We start by comparing distances using dot products (i.e., cosine of the
|
|||
|
// angle), because (1) this is the cheapest technique, and (2) it is valid
|
|||
|
// over the entire range of possible angles. (We can only use the sin^2
|
|||
|
// technique if both angles are less than 90 degrees or both angles are
|
|||
|
// greater than 90 degrees.)
|
|||
|
sign := triageCompareCosDistances(x, a, b)
|
|||
|
if sign != 0 {
|
|||
|
return sign
|
|||
|
}
|
|||
|
|
|||
|
// Optimization for (a == b) to avoid falling back to exact arithmetic.
|
|||
|
if a == b {
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
// It is much better numerically to compare distances using cos(angle) if
|
|||
|
// the distances are near 90 degrees and sin^2(angle) if the distances are
|
|||
|
// near 0 or 180 degrees. We only need to check one of the two angles when
|
|||
|
// making this decision because the fact that the test above failed means
|
|||
|
// that angles "a" and "b" are very close together.
|
|||
|
cosAX := a.Dot(x.Vector)
|
|||
|
if cosAX > 1/math.Sqrt2 {
|
|||
|
// Angles < 45 degrees.
|
|||
|
sign = triageCompareSin2Distances(x, a, b)
|
|||
|
} else if cosAX < -1/math.Sqrt2 {
|
|||
|
// Angles > 135 degrees. sin^2(angle) is decreasing in this range.
|
|||
|
sign = -triageCompareSin2Distances(x, a, b)
|
|||
|
}
|
|||
|
// C++ adds an additional check here using 80-bit floats.
|
|||
|
// This is skipped in Go because we only have 32 and 64 bit floats.
|
|||
|
|
|||
|
if sign != 0 {
|
|||
|
return sign
|
|||
|
}
|
|||
|
|
|||
|
sign = exactCompareDistances(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(a.Vector), r3.PreciseVectorFromVector(b.Vector))
|
|||
|
if sign != 0 {
|
|||
|
return sign
|
|||
|
}
|
|||
|
return symbolicCompareDistances(x, a, b)
|
|||
|
}
|
|||
|
|
|||
|
// cosDistance returns cos(XY) where XY is the angle between X and Y, and the
|
|||
|
// maximum error amount in the result. This requires X and Y be normalized.
|
|||
|
func cosDistance(x, y Point) (cos, err float64) {
|
|||
|
cos = x.Dot(y.Vector)
|
|||
|
return cos, 9.5*dblError*math.Abs(cos) + 1.5*dblError
|
|||
|
}
|
|||
|
|
|||
|
// sin2Distance returns sin**2(XY), where XY is the angle between X and Y,
|
|||
|
// and the maximum error amount in the result. This requires X and Y be normalized.
|
|||
|
func sin2Distance(x, y Point) (sin2, err float64) {
|
|||
|
// The (x-y).Cross(x+y) trick eliminates almost all of error due to x
|
|||
|
// and y being not quite unit length. This method is extremely accurate
|
|||
|
// for small distances; the *relative* error in the result is O(dblError) for
|
|||
|
// distances as small as dblError.
|
|||
|
n := x.Sub(y.Vector).Cross(x.Add(y.Vector))
|
|||
|
sin2 = 0.25 * n.Norm2()
|
|||
|
err = ((21+4*math.Sqrt(3))*dblError*sin2 +
|
|||
|
32*math.Sqrt(3)*dblError*dblError*math.Sqrt(sin2) +
|
|||
|
768*dblError*dblError*dblError*dblError)
|
|||
|
return sin2, err
|
|||
|
}
|
|||
|
|
|||
|
// triageCompareCosDistances returns -1, 0, or +1 according to whether AX < BX,
|
|||
|
// A == B, or AX > BX by comparing the distances between them using cosDistance.
|
|||
|
func triageCompareCosDistances(x, a, b Point) int {
|
|||
|
cosAX, cosAXerror := cosDistance(a, x)
|
|||
|
cosBX, cosBXerror := cosDistance(b, x)
|
|||
|
diff := cosAX - cosBX
|
|||
|
err := cosAXerror + cosBXerror
|
|||
|
if diff > err {
|
|||
|
return -1
|
|||
|
}
|
|||
|
if diff < -err {
|
|||
|
return 1
|
|||
|
}
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
// triageCompareSin2Distances returns -1, 0, or +1 according to whether AX < BX,
|
|||
|
// A == B, or AX > BX by comparing the distances between them using sin2Distance.
|
|||
|
func triageCompareSin2Distances(x, a, b Point) int {
|
|||
|
sin2AX, sin2AXerror := sin2Distance(a, x)
|
|||
|
sin2BX, sin2BXerror := sin2Distance(b, x)
|
|||
|
diff := sin2AX - sin2BX
|
|||
|
err := sin2AXerror + sin2BXerror
|
|||
|
if diff > err {
|
|||
|
return 1
|
|||
|
}
|
|||
|
if diff < -err {
|
|||
|
return -1
|
|||
|
}
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
// exactCompareDistances returns -1, 0, or 1 after comparing using the values as
|
|||
|
// PreciseVectors.
|
|||
|
func exactCompareDistances(x, a, b r3.PreciseVector) int {
|
|||
|
// This code produces the same result as though all points were reprojected
|
|||
|
// to lie exactly on the surface of the unit sphere. It is based on testing
|
|||
|
// whether x.Dot(a.Normalize()) < x.Dot(b.Normalize()), reformulated
|
|||
|
// so that it can be evaluated using exact arithmetic.
|
|||
|
cosAX := x.Dot(a)
|
|||
|
cosBX := x.Dot(b)
|
|||
|
|
|||
|
// If the two values have different signs, we need to handle that case now
|
|||
|
// before squaring them below.
|
|||
|
aSign := cosAX.Sign()
|
|||
|
bSign := cosBX.Sign()
|
|||
|
if aSign != bSign {
|
|||
|
// If cos(AX) > cos(BX), then AX < BX.
|
|||
|
if aSign > bSign {
|
|||
|
return -1
|
|||
|
}
|
|||
|
return 1
|
|||
|
}
|
|||
|
cosAX2 := newBigFloat().Mul(cosAX, cosAX)
|
|||
|
cosBX2 := newBigFloat().Mul(cosBX, cosBX)
|
|||
|
cmp := newBigFloat().Sub(cosBX2.Mul(cosBX2, a.Norm2()), cosAX2.Mul(cosAX2, b.Norm2()))
|
|||
|
return aSign * cmp.Sign()
|
|||
|
}
|
|||
|
|
|||
|
// symbolicCompareDistances returns -1, 0, or +1 given three points such that AX == BX
|
|||
|
// (exactly) according to whether AX < BX, AX == BX, or AX > BX after symbolic
|
|||
|
// perturbations are taken into account.
|
|||
|
func symbolicCompareDistances(x, a, b Point) int {
|
|||
|
// Our symbolic perturbation strategy is based on the following model.
|
|||
|
// Similar to "simulation of simplicity", we assign a perturbation to every
|
|||
|
// point such that if A < B, then the symbolic perturbation for A is much,
|
|||
|
// much larger than the symbolic perturbation for B. We imagine that
|
|||
|
// rather than projecting every point to lie exactly on the unit sphere,
|
|||
|
// instead each point is positioned on its own tiny pedestal that raises it
|
|||
|
// just off the surface of the unit sphere. This means that the distance AX
|
|||
|
// is actually the true distance AX plus the (symbolic) heights of the
|
|||
|
// pedestals for A and X. The pedestals are infinitesmally thin, so they do
|
|||
|
// not affect distance measurements except at the two endpoints. If several
|
|||
|
// points project to exactly the same point on the unit sphere, we imagine
|
|||
|
// that they are placed on separate pedestals placed close together, where
|
|||
|
// the distance between pedestals is much, much less than the height of any
|
|||
|
// pedestal. (There are a finite number of Points, and therefore a finite
|
|||
|
// number of pedestals, so this is possible.)
|
|||
|
//
|
|||
|
// If A < B, then A is on a higher pedestal than B, and therefore AX > BX.
|
|||
|
switch a.Cmp(b.Vector) {
|
|||
|
case -1:
|
|||
|
return 1
|
|||
|
case 1:
|
|||
|
return -1
|
|||
|
default:
|
|||
|
return 0
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
var (
|
|||
|
// ca45Degrees is a predefined ChordAngle representing (approximately) 45 degrees.
|
|||
|
ca45Degrees = s1.ChordAngleFromSquaredLength(2 - math.Sqrt2)
|
|||
|
)
|
|||
|
|
|||
|
// CompareDistance returns -1, 0, or +1 according to whether the distance XY is
|
|||
|
// respectively less than, equal to, or greater than the provided chord angle. Distances are measured
|
|||
|
// with respect to the positions of all points as though they are projected to lie
|
|||
|
// exactly on the surface of the unit sphere.
|
|||
|
func CompareDistance(x, y Point, r s1.ChordAngle) int {
|
|||
|
// As with CompareDistances, we start by comparing dot products because
|
|||
|
// the sin^2 method is only valid when the distance XY and the limit "r" are
|
|||
|
// both less than 90 degrees.
|
|||
|
sign := triageCompareCosDistance(x, y, float64(r))
|
|||
|
if sign != 0 {
|
|||
|
return sign
|
|||
|
}
|
|||
|
|
|||
|
// Unlike with CompareDistances, it's not worth using the sin^2 method
|
|||
|
// when the distance limit is near 180 degrees because the ChordAngle
|
|||
|
// representation itself has has a rounding error of up to 2e-8 radians for
|
|||
|
// distances near 180 degrees.
|
|||
|
if r < ca45Degrees {
|
|||
|
sign = triageCompareSin2Distance(x, y, float64(r))
|
|||
|
if sign != 0 {
|
|||
|
return sign
|
|||
|
}
|
|||
|
}
|
|||
|
return exactCompareDistance(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(y.Vector), big.NewFloat(float64(r)).SetPrec(big.MaxPrec))
|
|||
|
}
|
|||
|
|
|||
|
// triageCompareCosDistance returns -1, 0, or +1 according to whether the distance XY is
|
|||
|
// less than, equal to, or greater than r2 respectively using cos distance.
|
|||
|
func triageCompareCosDistance(x, y Point, r2 float64) int {
|
|||
|
cosXY, cosXYError := cosDistance(x, y)
|
|||
|
cosR := 1.0 - 0.5*r2
|
|||
|
cosRError := 2.0 * dblError * cosR
|
|||
|
diff := cosXY - cosR
|
|||
|
err := cosXYError + cosRError
|
|||
|
if diff > err {
|
|||
|
return -1
|
|||
|
}
|
|||
|
if diff < -err {
|
|||
|
return 1
|
|||
|
}
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
// triageCompareSin2Distance returns -1, 0, or +1 according to whether the distance XY is
|
|||
|
// less than, equal to, or greater than r2 respectively using sin^2 distance.
|
|||
|
func triageCompareSin2Distance(x, y Point, r2 float64) int {
|
|||
|
// Only valid for distance limits < 90 degrees.
|
|||
|
sin2XY, sin2XYError := sin2Distance(x, y)
|
|||
|
sin2R := r2 * (1.0 - 0.25*r2)
|
|||
|
sin2RError := 3.0 * dblError * sin2R
|
|||
|
diff := sin2XY - sin2R
|
|||
|
err := sin2XYError + sin2RError
|
|||
|
if diff > err {
|
|||
|
return 1
|
|||
|
}
|
|||
|
if diff < -err {
|
|||
|
return -1
|
|||
|
}
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
var (
|
|||
|
bigOne = big.NewFloat(1.0).SetPrec(big.MaxPrec)
|
|||
|
bigHalf = big.NewFloat(0.5).SetPrec(big.MaxPrec)
|
|||
|
)
|
|||
|
|
|||
|
// exactCompareDistance returns -1, 0, or +1 after comparing using PreciseVectors.
|
|||
|
func exactCompareDistance(x, y r3.PreciseVector, r2 *big.Float) int {
|
|||
|
// This code produces the same result as though all points were reprojected
|
|||
|
// to lie exactly on the surface of the unit sphere. It is based on
|
|||
|
// comparing the cosine of the angle XY (when both points are projected to
|
|||
|
// lie exactly on the sphere) to the given threshold.
|
|||
|
cosXY := x.Dot(y)
|
|||
|
cosR := newBigFloat().Sub(bigOne, newBigFloat().Mul(bigHalf, r2))
|
|||
|
|
|||
|
// If the two values have different signs, we need to handle that case now
|
|||
|
// before squaring them below.
|
|||
|
xySign := cosXY.Sign()
|
|||
|
rSign := cosR.Sign()
|
|||
|
if xySign != rSign {
|
|||
|
if xySign > rSign {
|
|||
|
return -1
|
|||
|
}
|
|||
|
return 1 // If cos(XY) > cos(r), then XY < r.
|
|||
|
}
|
|||
|
cmp := newBigFloat().Sub(
|
|||
|
newBigFloat().Mul(
|
|||
|
newBigFloat().Mul(cosR, cosR), newBigFloat().Mul(x.Norm2(), y.Norm2())),
|
|||
|
newBigFloat().Mul(cosXY, cosXY))
|
|||
|
return xySign * cmp.Sign()
|
|||
|
}
|
|||
|
|
|||
|
// TODO(roberts): Differences from C++
|
|||
|
// CompareEdgeDistance
|
|||
|
// CompareEdgeDirections
|
|||
|
// EdgeCircumcenterSign
|
|||
|
// GetVoronoiSiteExclusion
|
|||
|
// GetClosestVertex
|
|||
|
// TriageCompareLineSin2Distance
|
|||
|
// TriageCompareLineCos2Distance
|
|||
|
// TriageCompareLineDistance
|
|||
|
// TriageCompareEdgeDistance
|
|||
|
// ExactCompareLineDistance
|
|||
|
// ExactCompareEdgeDistance
|
|||
|
// TriageCompareEdgeDirections
|
|||
|
// ExactCompareEdgeDirections
|
|||
|
// ArePointsAntipodal
|
|||
|
// ArePointsLinearlyDependent
|
|||
|
// GetCircumcenter
|
|||
|
// TriageEdgeCircumcenterSign
|
|||
|
// ExactEdgeCircumcenterSign
|
|||
|
// UnperturbedSign
|
|||
|
// SymbolicEdgeCircumcenterSign
|
|||
|
// ExactVoronoiSiteExclusion
|