gotosocial/vendor/github.com/tetratelabs/wazero/internal/engine/interpreter/compiler.go

3633 lines
95 KiB
Go
Raw Normal View History

package interpreter
import (
"bytes"
"encoding/binary"
"fmt"
"math"
"strings"
"github.com/tetratelabs/wazero/api"
"github.com/tetratelabs/wazero/internal/leb128"
"github.com/tetratelabs/wazero/internal/wasm"
)
type controlFrameKind byte
const (
controlFrameKindBlockWithContinuationLabel controlFrameKind = iota
controlFrameKindBlockWithoutContinuationLabel
controlFrameKindFunction
controlFrameKindLoop
controlFrameKindIfWithElse
controlFrameKindIfWithoutElse
)
type (
controlFrame struct {
frameID uint32
// originalStackLenWithoutParam holds the number of values on the stack
// when Start executing this control frame minus params for the block.
originalStackLenWithoutParam int
// originalStackLenWithoutParamUint64 is almost the same as originalStackLenWithoutParam
// except that it holds the number of values on the stack in uint64.
originalStackLenWithoutParamUint64 int
blockType *wasm.FunctionType
kind controlFrameKind
}
controlFrames struct{ frames []controlFrame }
)
func (c *controlFrame) ensureContinuation() {
// Make sure that if the frame is block and doesn't have continuation,
// change the Kind so we can emit the continuation block
// later when we reach the End instruction of this frame.
if c.kind == controlFrameKindBlockWithoutContinuationLabel {
c.kind = controlFrameKindBlockWithContinuationLabel
}
}
func (c *controlFrame) asLabel() label {
switch c.kind {
case controlFrameKindBlockWithContinuationLabel,
controlFrameKindBlockWithoutContinuationLabel:
return newLabel(labelKindContinuation, c.frameID)
case controlFrameKindLoop:
return newLabel(labelKindHeader, c.frameID)
case controlFrameKindFunction:
return newLabel(labelKindReturn, 0)
case controlFrameKindIfWithElse,
controlFrameKindIfWithoutElse:
return newLabel(labelKindContinuation, c.frameID)
}
panic(fmt.Sprintf("unreachable: a bug in interpreterir implementation: %v", c.kind))
}
func (c *controlFrames) functionFrame() *controlFrame {
// No need to check stack bound
// as we can assume that all the operations
// are valid thanks to validateFunction
// at module validation phase.
return &c.frames[0]
}
func (c *controlFrames) get(n int) *controlFrame {
// No need to check stack bound
// as we can assume that all the operations
// are valid thanks to validateFunction
// at module validation phase.
return &c.frames[len(c.frames)-n-1]
}
func (c *controlFrames) top() *controlFrame {
// No need to check stack bound
// as we can assume that all the operations
// are valid thanks to validateFunction
// at module validation phase.
return &c.frames[len(c.frames)-1]
}
func (c *controlFrames) empty() bool {
return len(c.frames) == 0
}
func (c *controlFrames) pop() (frame *controlFrame) {
// No need to check stack bound
// as we can assume that all the operations
// are valid thanks to validateFunction
// at module validation phase.
frame = c.top()
c.frames = c.frames[:len(c.frames)-1]
return
}
func (c *controlFrames) push(frame controlFrame) {
c.frames = append(c.frames, frame)
}
func (c *compiler) initializeStack() {
// Reuse the existing slice.
c.localIndexToStackHeightInUint64 = c.localIndexToStackHeightInUint64[:0]
var current int
for _, lt := range c.sig.Params {
c.localIndexToStackHeightInUint64 = append(c.localIndexToStackHeightInUint64, current)
if lt == wasm.ValueTypeV128 {
current++
}
current++
}
if c.callFrameStackSizeInUint64 > 0 {
// We reserve the stack slots for result values below the return call frame slots.
if diff := c.sig.ResultNumInUint64 - c.sig.ParamNumInUint64; diff > 0 {
current += diff
}
}
// Non-func param locals Start after the return call frame.
current += c.callFrameStackSizeInUint64
for _, lt := range c.localTypes {
c.localIndexToStackHeightInUint64 = append(c.localIndexToStackHeightInUint64, current)
if lt == wasm.ValueTypeV128 {
current++
}
current++
}
// Push function arguments.
for _, t := range c.sig.Params {
c.stackPush(wasmValueTypeTounsignedType(t))
}
if c.callFrameStackSizeInUint64 > 0 {
// Reserve the stack slots for results.
for i := 0; i < c.sig.ResultNumInUint64-c.sig.ParamNumInUint64; i++ {
c.stackPush(unsignedTypeI64)
}
// Reserve the stack slots for call frame.
for i := 0; i < c.callFrameStackSizeInUint64; i++ {
c.stackPush(unsignedTypeI64)
}
}
}
// compiler is in charge of lowering raw Wasm function body to get compilationResult.
// This is created per *wasm.Module and reused for all functions in it to reduce memory allocations.
type compiler struct {
module *wasm.Module
enabledFeatures api.CoreFeatures
callFrameStackSizeInUint64 int
stack []unsignedType
// stackLenInUint64 is the length of the stack in uint64.
stackLenInUint64 int
currentFrameID uint32
controlFrames controlFrames
unreachableState struct {
on bool
depth int
}
pc, currentOpPC uint64
result compilationResult
// body holds the code for the function's body where Wasm instructions are stored.
body []byte
// sig is the function type of the target function.
sig *wasm.FunctionType
// localTypes holds the target function locals' value types except function params.
localTypes []wasm.ValueType
// localIndexToStackHeightInUint64 maps the local index (starting with function params) to the stack height
// where the local is places. This is the necessary mapping for functions who contain vector type locals.
localIndexToStackHeightInUint64 []int
// types hold all the function types in the module where the targe function exists.
types []wasm.FunctionType
// funcs holds the type indexes for all declared functions in the module where the target function exists.
funcs []uint32
// globals holds the global types for all declared globals in the module where the target function exists.
globals []wasm.GlobalType
// needSourceOffset is true if this module requires DWARF based stack trace.
needSourceOffset bool
// bodyOffsetInCodeSection is the offset of the body of this function in the original Wasm binary's code section.
bodyOffsetInCodeSection uint64
ensureTermination bool
// Pre-allocated bytes.Reader to be used in various places.
br *bytes.Reader
funcTypeToSigs funcTypeToIRSignatures
next int
}
//lint:ignore U1000 for debugging only.
func (c *compiler) stackDump() string {
strs := make([]string, 0, len(c.stack))
for _, s := range c.stack {
strs = append(strs, s.String())
}
return "[" + strings.Join(strs, ", ") + "]"
}
func (c *compiler) markUnreachable() {
c.unreachableState.on = true
}
func (c *compiler) resetUnreachable() {
c.unreachableState.on = false
}
// memoryType is the type of memory in a compiled module.
type memoryType byte
const (
// memoryTypeNone indicates there is no memory.
memoryTypeNone memoryType = iota
// memoryTypeStandard indicates there is a non-shared memory.
memoryTypeStandard
// memoryTypeShared indicates there is a shared memory.
memoryTypeShared
)
type compilationResult struct {
// Operations holds interpreterir operations compiled from Wasm instructions in a Wasm function.
Operations []unionOperation
// IROperationSourceOffsetsInWasmBinary is index-correlated with Operation and maps each operation to the corresponding source instruction's
// offset in the original WebAssembly binary.
// Non nil only when the given Wasm module has the DWARF section.
IROperationSourceOffsetsInWasmBinary []uint64
// LabelCallers maps label to the number of callers to that label.
// Here "callers" means that the call-sites which jumps to the label with br, br_if or br_table
// instructions.
//
// Note: zero possible and allowed in wasm. e.g.
//
// (block
// (br 0)
// (block i32.const 1111)
// )
//
// This example the label corresponding to `(block i32.const 1111)` is never be reached at runtime because `br 0` exits the function before we reach there
LabelCallers map[label]uint32
// UsesMemory is true if this function might use memory.
UsesMemory bool
// The following fields are per-module values, not per-function.
// Globals holds all the declarations of globals in the module from which this function is compiled.
Globals []wasm.GlobalType
// Functions holds all the declarations of function in the module from which this function is compiled, including itself.
Functions []wasm.Index
// Types holds all the types in the module from which this function is compiled.
Types []wasm.FunctionType
// Memory indicates the type of memory of the module.
Memory memoryType
// HasTable is true if the module from which this function is compiled has table declaration.
HasTable bool
// HasDataInstances is true if the module has data instances which might be used by memory.init or data.drop instructions.
HasDataInstances bool
// HasDataInstances is true if the module has element instances which might be used by table.init or elem.drop instructions.
HasElementInstances bool
}
// newCompiler returns the new *compiler for the given parameters.
// Use compiler.Next function to get compilation result per function.
func newCompiler(enabledFeatures api.CoreFeatures, callFrameStackSizeInUint64 int, module *wasm.Module, ensureTermination bool) (*compiler, error) {
functions, globals, mem, tables, err := module.AllDeclarations()
if err != nil {
return nil, err
}
hasTable, hasDataInstances, hasElementInstances := len(tables) > 0,
len(module.DataSection) > 0, len(module.ElementSection) > 0
var mt memoryType
switch {
case mem == nil:
mt = memoryTypeNone
case mem.IsShared:
mt = memoryTypeShared
default:
mt = memoryTypeStandard
}
types := module.TypeSection
c := &compiler{
module: module,
enabledFeatures: enabledFeatures,
controlFrames: controlFrames{},
callFrameStackSizeInUint64: callFrameStackSizeInUint64,
result: compilationResult{
Globals: globals,
Functions: functions,
Types: types,
Memory: mt,
HasTable: hasTable,
HasDataInstances: hasDataInstances,
HasElementInstances: hasElementInstances,
LabelCallers: map[label]uint32{},
},
globals: globals,
funcs: functions,
types: types,
ensureTermination: ensureTermination,
br: bytes.NewReader(nil),
funcTypeToSigs: funcTypeToIRSignatures{
indirectCalls: make([]*signature, len(types)),
directCalls: make([]*signature, len(types)),
wasmTypes: types,
},
needSourceOffset: module.DWARFLines != nil,
}
return c, nil
}
// Next returns the next compilationResult for this compiler.
func (c *compiler) Next() (*compilationResult, error) {
funcIndex := c.next
code := &c.module.CodeSection[funcIndex]
sig := &c.types[c.module.FunctionSection[funcIndex]]
// Reset the previous result.
c.result.Operations = c.result.Operations[:0]
c.result.IROperationSourceOffsetsInWasmBinary = c.result.IROperationSourceOffsetsInWasmBinary[:0]
c.result.UsesMemory = false
// Clears the existing entries in LabelCallers.
for frameID := uint32(0); frameID <= c.currentFrameID; frameID++ {
for k := labelKind(0); k < labelKindNum; k++ {
delete(c.result.LabelCallers, newLabel(k, frameID))
}
}
// Reset the previous states.
c.pc = 0
c.currentOpPC = 0
c.currentFrameID = 0
c.stackLenInUint64 = 0
c.unreachableState.on, c.unreachableState.depth = false, 0
if err := c.compile(sig, code.Body, code.LocalTypes, code.BodyOffsetInCodeSection); err != nil {
return nil, err
}
c.next++
return &c.result, nil
}
// Compile lowers given function instance into interpreterir operations
// so that the resulting operations can be consumed by the interpreter
// or the compiler compilation engine.
func (c *compiler) compile(sig *wasm.FunctionType, body []byte, localTypes []wasm.ValueType, bodyOffsetInCodeSection uint64) error {
// Set function specific fields.
c.body = body
c.localTypes = localTypes
c.sig = sig
c.bodyOffsetInCodeSection = bodyOffsetInCodeSection
// Reuses the underlying slices.
c.stack = c.stack[:0]
c.controlFrames.frames = c.controlFrames.frames[:0]
c.initializeStack()
// Emit const expressions for locals.
// Note that here we don't take function arguments
// into account, meaning that callers must push
// arguments before entering into the function body.
for _, t := range c.localTypes {
c.emitDefaultValue(t)
}
// Insert the function control frame.
c.controlFrames.push(controlFrame{
frameID: c.nextFrameID(),
blockType: c.sig,
kind: controlFrameKindFunction,
})
// Now, enter the function body.
for !c.controlFrames.empty() && c.pc < uint64(len(c.body)) {
if err := c.handleInstruction(); err != nil {
return fmt.Errorf("handling instruction: %w", err)
}
}
return nil
}
// Translate the current Wasm instruction to interpreterir's operations,
// and emit the results into c.results.
func (c *compiler) handleInstruction() error {
op := c.body[c.pc]
c.currentOpPC = c.pc
if false {
var instName string
if op == wasm.OpcodeVecPrefix {
instName = wasm.VectorInstructionName(c.body[c.pc+1])
} else if op == wasm.OpcodeAtomicPrefix {
instName = wasm.AtomicInstructionName(c.body[c.pc+1])
} else if op == wasm.OpcodeMiscPrefix {
instName = wasm.MiscInstructionName(c.body[c.pc+1])
} else {
instName = wasm.InstructionName(op)
}
fmt.Printf("handling %s, unreachable_state(on=%v,depth=%d), stack=%v\n",
instName, c.unreachableState.on, c.unreachableState.depth, c.stack,
)
}
var peekValueType unsignedType
if len(c.stack) > 0 {
peekValueType = c.stackPeek()
}
// Modify the stack according the current instruction.
// Note that some instructions will read "index" in
// applyToStack and advance c.pc inside the function.
index, err := c.applyToStack(op)
if err != nil {
return fmt.Errorf("apply stack failed for %s: %w", wasm.InstructionName(op), err)
}
// Now we handle each instruction, and
// emit the corresponding interpreterir operations to the results.
operatorSwitch:
switch op {
case wasm.OpcodeUnreachable:
c.emit(newOperationUnreachable())
c.markUnreachable()
case wasm.OpcodeNop:
// Nop is noop!
case wasm.OpcodeBlock:
c.br.Reset(c.body[c.pc+1:])
bt, num, err := wasm.DecodeBlockType(c.types, c.br, c.enabledFeatures)
if err != nil {
return fmt.Errorf("reading block type for block instruction: %w", err)
}
c.pc += num
if c.unreachableState.on {
// If it is currently in unreachable,
// just remove the entire block.
c.unreachableState.depth++
break operatorSwitch
}
// Create a new frame -- entering this block.
frame := controlFrame{
frameID: c.nextFrameID(),
originalStackLenWithoutParam: len(c.stack) - len(bt.Params),
originalStackLenWithoutParamUint64: c.stackLenInUint64 - bt.ParamNumInUint64,
kind: controlFrameKindBlockWithoutContinuationLabel,
blockType: bt,
}
c.controlFrames.push(frame)
case wasm.OpcodeLoop:
c.br.Reset(c.body[c.pc+1:])
bt, num, err := wasm.DecodeBlockType(c.types, c.br, c.enabledFeatures)
if err != nil {
return fmt.Errorf("reading block type for loop instruction: %w", err)
}
c.pc += num
if c.unreachableState.on {
// If it is currently in unreachable,
// just remove the entire block.
c.unreachableState.depth++
break operatorSwitch
}
// Create a new frame -- entering loop.
frame := controlFrame{
frameID: c.nextFrameID(),
originalStackLenWithoutParam: len(c.stack) - len(bt.Params),
originalStackLenWithoutParamUint64: c.stackLenInUint64 - bt.ParamNumInUint64,
kind: controlFrameKindLoop,
blockType: bt,
}
c.controlFrames.push(frame)
// Prep labels for inside and the continuation of this loop.
loopLabel := newLabel(labelKindHeader, frame.frameID)
c.result.LabelCallers[loopLabel]++
// Emit the branch operation to enter inside the loop.
c.emit(newOperationBr(loopLabel))
c.emit(newOperationLabel(loopLabel))
// Insert the exit code check on the loop header, which is the only necessary point in the function body
// to prevent infinite loop.
//
// Note that this is a little aggressive: this checks the exit code regardless the loop header is actually
// the loop. In other words, this checks even when no br/br_if/br_table instructions jumping to this loop
// exist. However, in reality, that shouldn't be an issue since such "noop" loop header will highly likely be
// optimized out by almost all guest language compilers which have the control flow optimization passes.
if c.ensureTermination {
c.emit(newOperationBuiltinFunctionCheckExitCode())
}
case wasm.OpcodeIf:
c.br.Reset(c.body[c.pc+1:])
bt, num, err := wasm.DecodeBlockType(c.types, c.br, c.enabledFeatures)
if err != nil {
return fmt.Errorf("reading block type for if instruction: %w", err)
}
c.pc += num
if c.unreachableState.on {
// If it is currently in unreachable,
// just remove the entire block.
c.unreachableState.depth++
break operatorSwitch
}
// Create a new frame -- entering if.
frame := controlFrame{
frameID: c.nextFrameID(),
originalStackLenWithoutParam: len(c.stack) - len(bt.Params),
originalStackLenWithoutParamUint64: c.stackLenInUint64 - bt.ParamNumInUint64,
// Note this will be set to controlFrameKindIfWithElse
// when else opcode found later.
kind: controlFrameKindIfWithoutElse,
blockType: bt,
}
c.controlFrames.push(frame)
// Prep labels for if and else of this if.
thenLabel := newLabel(labelKindHeader, frame.frameID)
elseLabel := newLabel(labelKindElse, frame.frameID)
c.result.LabelCallers[thenLabel]++
c.result.LabelCallers[elseLabel]++
// Emit the branch operation to enter the then block.
c.emit(newOperationBrIf(thenLabel, elseLabel, nopinclusiveRange))
c.emit(newOperationLabel(thenLabel))
case wasm.OpcodeElse:
frame := c.controlFrames.top()
if c.unreachableState.on && c.unreachableState.depth > 0 {
// If it is currently in unreachable, and the nested if,
// just remove the entire else block.
break operatorSwitch
} else if c.unreachableState.on {
// If it is currently in unreachable, and the non-nested if,
// reset the stack so we can correctly handle the else block.
top := c.controlFrames.top()
c.stackSwitchAt(top)
top.kind = controlFrameKindIfWithElse
// Re-push the parameters to the if block so that else block can use them.
for _, t := range frame.blockType.Params {
c.stackPush(wasmValueTypeTounsignedType(t))
}
// We are no longer unreachable in else frame,
// so emit the correct label, and reset the unreachable state.
elseLabel := newLabel(labelKindElse, frame.frameID)
c.resetUnreachable()
c.emit(
newOperationLabel(elseLabel),
)
break operatorSwitch
}
// Change the Kind of this If block, indicating that
// the if has else block.
frame.kind = controlFrameKindIfWithElse
// We need to reset the stack so that
// the values pushed inside the then block
// do not affect the else block.
dropOp := newOperationDrop(c.getFrameDropRange(frame, false))
// Reset the stack manipulated by the then block, and re-push the block param types to the stack.
c.stackSwitchAt(frame)
for _, t := range frame.blockType.Params {
c.stackPush(wasmValueTypeTounsignedType(t))
}
// Prep labels for else and the continuation of this if block.
elseLabel := newLabel(labelKindElse, frame.frameID)
continuationLabel := newLabel(labelKindContinuation, frame.frameID)
c.result.LabelCallers[continuationLabel]++
// Emit the instructions for exiting the if loop,
// and then the initiation of else block.
c.emit(dropOp)
// Jump to the continuation of this block.
c.emit(newOperationBr(continuationLabel))
// Initiate the else block.
c.emit(newOperationLabel(elseLabel))
case wasm.OpcodeEnd:
if c.unreachableState.on && c.unreachableState.depth > 0 {
c.unreachableState.depth--
break operatorSwitch
} else if c.unreachableState.on {
c.resetUnreachable()
frame := c.controlFrames.pop()
if c.controlFrames.empty() {
return nil
}
c.stackSwitchAt(frame)
for _, t := range frame.blockType.Results {
c.stackPush(wasmValueTypeTounsignedType(t))
}
continuationLabel := newLabel(labelKindContinuation, frame.frameID)
if frame.kind == controlFrameKindIfWithoutElse {
// Emit the else label.
elseLabel := newLabel(labelKindElse, frame.frameID)
c.result.LabelCallers[continuationLabel]++
c.emit(newOperationLabel(elseLabel))
c.emit(newOperationBr(continuationLabel))
c.emit(newOperationLabel(continuationLabel))
} else {
c.emit(
newOperationLabel(continuationLabel),
)
}
break operatorSwitch
}
frame := c.controlFrames.pop()
// We need to reset the stack so that
// the values pushed inside the block.
dropOp := newOperationDrop(c.getFrameDropRange(frame, true))
c.stackSwitchAt(frame)
// Push the result types onto the stack.
for _, t := range frame.blockType.Results {
c.stackPush(wasmValueTypeTounsignedType(t))
}
// Emit the instructions according to the Kind of the current control frame.
switch frame.kind {
case controlFrameKindFunction:
if !c.controlFrames.empty() {
// Should never happen. If so, there's a bug in the translation.
panic("bug: found more function control frames")
}
// Return from function.
c.emit(dropOp)
c.emit(newOperationBr(newLabel(labelKindReturn, 0)))
case controlFrameKindIfWithoutElse:
// This case we have to emit "empty" else label.
elseLabel := newLabel(labelKindElse, frame.frameID)
continuationLabel := newLabel(labelKindContinuation, frame.frameID)
c.result.LabelCallers[continuationLabel] += 2
c.emit(dropOp)
c.emit(newOperationBr(continuationLabel))
// Emit the else which soon branches into the continuation.
c.emit(newOperationLabel(elseLabel))
c.emit(newOperationBr(continuationLabel))
// Initiate the continuation.
c.emit(newOperationLabel(continuationLabel))
case controlFrameKindBlockWithContinuationLabel,
controlFrameKindIfWithElse:
continuationLabel := newLabel(labelKindContinuation, frame.frameID)
c.result.LabelCallers[continuationLabel]++
c.emit(dropOp)
c.emit(newOperationBr(continuationLabel))
c.emit(newOperationLabel(continuationLabel))
case controlFrameKindLoop, controlFrameKindBlockWithoutContinuationLabel:
c.emit(
dropOp,
)
default:
// Should never happen. If so, there's a bug in the translation.
panic(fmt.Errorf("bug: invalid control frame Kind: 0x%x", frame.kind))
}
case wasm.OpcodeBr:
targetIndex, n, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("read the target for br_if: %w", err)
}
c.pc += n
if c.unreachableState.on {
// If it is currently in unreachable, br is no-op.
break operatorSwitch
}
targetFrame := c.controlFrames.get(int(targetIndex))
targetFrame.ensureContinuation()
dropOp := newOperationDrop(c.getFrameDropRange(targetFrame, false))
targetID := targetFrame.asLabel()
c.result.LabelCallers[targetID]++
c.emit(dropOp)
c.emit(newOperationBr(targetID))
// Br operation is stack-polymorphic, and mark the state as unreachable.
// That means subsequent instructions in the current control frame are "unreachable"
// and can be safely removed.
c.markUnreachable()
case wasm.OpcodeBrIf:
targetIndex, n, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("read the target for br_if: %w", err)
}
c.pc += n
if c.unreachableState.on {
// If it is currently in unreachable, br-if is no-op.
break operatorSwitch
}
targetFrame := c.controlFrames.get(int(targetIndex))
targetFrame.ensureContinuation()
drop := c.getFrameDropRange(targetFrame, false)
target := targetFrame.asLabel()
c.result.LabelCallers[target]++
continuationLabel := newLabel(labelKindHeader, c.nextFrameID())
c.result.LabelCallers[continuationLabel]++
c.emit(newOperationBrIf(target, continuationLabel, drop))
// Start emitting else block operations.
c.emit(newOperationLabel(continuationLabel))
case wasm.OpcodeBrTable:
c.br.Reset(c.body[c.pc+1:])
r := c.br
numTargets, n, err := leb128.DecodeUint32(r)
if err != nil {
return fmt.Errorf("error reading number of targets in br_table: %w", err)
}
c.pc += n
if c.unreachableState.on {
// If it is currently in unreachable, br_table is no-op.
// But before proceeding to the next instruction, we must advance the pc
// according to the number of br_table targets.
for i := uint32(0); i <= numTargets; i++ { // inclusive as we also need to read the index of default target.
_, n, err := leb128.DecodeUint32(r)
if err != nil {
return fmt.Errorf("error reading target %d in br_table: %w", i, err)
}
c.pc += n
}
break operatorSwitch
}
// Read the branch targets.
s := numTargets * 2
targetLabels := make([]uint64, 2+s) // (label, inclusiveRange) * (default+numTargets)
for i := uint32(0); i < s; i += 2 {
l, n, err := leb128.DecodeUint32(r)
if err != nil {
return fmt.Errorf("error reading target %d in br_table: %w", i, err)
}
c.pc += n
targetFrame := c.controlFrames.get(int(l))
targetFrame.ensureContinuation()
drop := c.getFrameDropRange(targetFrame, false)
targetLabel := targetFrame.asLabel()
targetLabels[i] = uint64(targetLabel)
targetLabels[i+1] = drop.AsU64()
c.result.LabelCallers[targetLabel]++
}
// Prep default target control frame.
l, n, err := leb128.DecodeUint32(r)
if err != nil {
return fmt.Errorf("error reading default target of br_table: %w", err)
}
c.pc += n
defaultTargetFrame := c.controlFrames.get(int(l))
defaultTargetFrame.ensureContinuation()
defaultTargetDrop := c.getFrameDropRange(defaultTargetFrame, false)
defaultLabel := defaultTargetFrame.asLabel()
c.result.LabelCallers[defaultLabel]++
targetLabels[s] = uint64(defaultLabel)
targetLabels[s+1] = defaultTargetDrop.AsU64()
c.emit(newOperationBrTable(targetLabels))
// br_table operation is stack-polymorphic, and mark the state as unreachable.
// That means subsequent instructions in the current control frame are "unreachable"
// and can be safely removed.
c.markUnreachable()
case wasm.OpcodeReturn:
functionFrame := c.controlFrames.functionFrame()
dropOp := newOperationDrop(c.getFrameDropRange(functionFrame, false))
// Cleanup the stack and then jmp to function frame's continuation (meaning return).
c.emit(dropOp)
c.emit(newOperationBr(functionFrame.asLabel()))
// Return operation is stack-polymorphic, and mark the state as unreachable.
// That means subsequent instructions in the current control frame are "unreachable"
// and can be safely removed.
c.markUnreachable()
case wasm.OpcodeCall:
c.emit(
newOperationCall(index),
)
case wasm.OpcodeCallIndirect:
typeIndex := index
tableIndex, n, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("read target for br_table: %w", err)
}
c.pc += n
c.emit(
newOperationCallIndirect(typeIndex, tableIndex),
)
case wasm.OpcodeDrop:
r := inclusiveRange{Start: 0, End: 0}
if peekValueType == unsignedTypeV128 {
// inclusiveRange is the range in uint64 representation, so dropping a vector value on top
// should be translated as drop [0..1] inclusively.
r.End++
}
c.emit(newOperationDrop(r))
case wasm.OpcodeSelect:
// If it is on the unreachable state, ignore the instruction.
if c.unreachableState.on {
break operatorSwitch
}
isTargetVector := c.stackPeek() == unsignedTypeV128
c.emit(
newOperationSelect(isTargetVector),
)
case wasm.OpcodeTypedSelect:
// Skips two bytes: vector size fixed to 1, and the value type for select.
c.pc += 2
// If it is on the unreachable state, ignore the instruction.
if c.unreachableState.on {
break operatorSwitch
}
// Typed select is semantically equivalent to select at runtime.
isTargetVector := c.stackPeek() == unsignedTypeV128
c.emit(
newOperationSelect(isTargetVector),
)
case wasm.OpcodeLocalGet:
depth := c.localDepth(index)
if isVector := c.localType(index) == wasm.ValueTypeV128; !isVector {
c.emit(
// -1 because we already manipulated the stack before
// called localDepth ^^.
newOperationPick(depth-1, isVector),
)
} else {
c.emit(
// -2 because we already manipulated the stack before
// called localDepth ^^.
newOperationPick(depth-2, isVector),
)
}
case wasm.OpcodeLocalSet:
depth := c.localDepth(index)
isVector := c.localType(index) == wasm.ValueTypeV128
if isVector {
c.emit(
// +2 because we already popped the operands for this operation from the c.stack before
// called localDepth ^^,
newOperationSet(depth+2, isVector),
)
} else {
c.emit(
// +1 because we already popped the operands for this operation from the c.stack before
// called localDepth ^^,
newOperationSet(depth+1, isVector),
)
}
case wasm.OpcodeLocalTee:
depth := c.localDepth(index)
isVector := c.localType(index) == wasm.ValueTypeV128
if isVector {
c.emit(newOperationPick(1, isVector))
c.emit(newOperationSet(depth+2, isVector))
} else {
c.emit(
newOperationPick(0, isVector))
c.emit(newOperationSet(depth+1, isVector))
}
case wasm.OpcodeGlobalGet:
c.emit(
newOperationGlobalGet(index),
)
case wasm.OpcodeGlobalSet:
c.emit(
newOperationGlobalSet(index),
)
case wasm.OpcodeI32Load:
imm, err := c.readMemoryArg(wasm.OpcodeI32LoadName)
if err != nil {
return err
}
c.emit(newOperationLoad(unsignedTypeI32, imm))
case wasm.OpcodeI64Load:
imm, err := c.readMemoryArg(wasm.OpcodeI64LoadName)
if err != nil {
return err
}
c.emit(newOperationLoad(unsignedTypeI64, imm))
case wasm.OpcodeF32Load:
imm, err := c.readMemoryArg(wasm.OpcodeF32LoadName)
if err != nil {
return err
}
c.emit(newOperationLoad(unsignedTypeF32, imm))
case wasm.OpcodeF64Load:
imm, err := c.readMemoryArg(wasm.OpcodeF64LoadName)
if err != nil {
return err
}
c.emit(newOperationLoad(unsignedTypeF64, imm))
case wasm.OpcodeI32Load8S:
imm, err := c.readMemoryArg(wasm.OpcodeI32Load8SName)
if err != nil {
return err
}
c.emit(newOperationLoad8(signedInt32, imm))
case wasm.OpcodeI32Load8U:
imm, err := c.readMemoryArg(wasm.OpcodeI32Load8UName)
if err != nil {
return err
}
c.emit(newOperationLoad8(signedUint32, imm))
case wasm.OpcodeI32Load16S:
imm, err := c.readMemoryArg(wasm.OpcodeI32Load16SName)
if err != nil {
return err
}
c.emit(newOperationLoad16(signedInt32, imm))
case wasm.OpcodeI32Load16U:
imm, err := c.readMemoryArg(wasm.OpcodeI32Load16UName)
if err != nil {
return err
}
c.emit(newOperationLoad16(signedUint32, imm))
case wasm.OpcodeI64Load8S:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load8SName)
if err != nil {
return err
}
c.emit(newOperationLoad8(signedInt64, imm))
case wasm.OpcodeI64Load8U:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load8UName)
if err != nil {
return err
}
c.emit(newOperationLoad8(signedUint64, imm))
case wasm.OpcodeI64Load16S:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load16SName)
if err != nil {
return err
}
c.emit(newOperationLoad16(signedInt64, imm))
case wasm.OpcodeI64Load16U:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load16UName)
if err != nil {
return err
}
c.emit(newOperationLoad16(signedUint64, imm))
case wasm.OpcodeI64Load32S:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load32SName)
if err != nil {
return err
}
c.emit(newOperationLoad32(true, imm))
case wasm.OpcodeI64Load32U:
imm, err := c.readMemoryArg(wasm.OpcodeI64Load32UName)
if err != nil {
return err
}
c.emit(newOperationLoad32(false, imm))
case wasm.OpcodeI32Store:
imm, err := c.readMemoryArg(wasm.OpcodeI32StoreName)
if err != nil {
return err
}
c.emit(
newOperationStore(unsignedTypeI32, imm),
)
case wasm.OpcodeI64Store:
imm, err := c.readMemoryArg(wasm.OpcodeI64StoreName)
if err != nil {
return err
}
c.emit(
newOperationStore(unsignedTypeI64, imm),
)
case wasm.OpcodeF32Store:
imm, err := c.readMemoryArg(wasm.OpcodeF32StoreName)
if err != nil {
return err
}
c.emit(
newOperationStore(unsignedTypeF32, imm),
)
case wasm.OpcodeF64Store:
imm, err := c.readMemoryArg(wasm.OpcodeF64StoreName)
if err != nil {
return err
}
c.emit(
newOperationStore(unsignedTypeF64, imm),
)
case wasm.OpcodeI32Store8:
imm, err := c.readMemoryArg(wasm.OpcodeI32Store8Name)
if err != nil {
return err
}
c.emit(
newOperationStore8(imm),
)
case wasm.OpcodeI32Store16:
imm, err := c.readMemoryArg(wasm.OpcodeI32Store16Name)
if err != nil {
return err
}
c.emit(
newOperationStore16(imm),
)
case wasm.OpcodeI64Store8:
imm, err := c.readMemoryArg(wasm.OpcodeI64Store8Name)
if err != nil {
return err
}
c.emit(
newOperationStore8(imm),
)
case wasm.OpcodeI64Store16:
imm, err := c.readMemoryArg(wasm.OpcodeI64Store16Name)
if err != nil {
return err
}
c.emit(
newOperationStore16(imm),
)
case wasm.OpcodeI64Store32:
imm, err := c.readMemoryArg(wasm.OpcodeI64Store32Name)
if err != nil {
return err
}
c.emit(
newOperationStore32(imm),
)
case wasm.OpcodeMemorySize:
c.result.UsesMemory = true
c.pc++ // Skip the reserved one byte.
c.emit(
newOperationMemorySize(),
)
case wasm.OpcodeMemoryGrow:
c.result.UsesMemory = true
c.pc++ // Skip the reserved one byte.
c.emit(
newOperationMemoryGrow(),
)
case wasm.OpcodeI32Const:
val, num, err := leb128.LoadInt32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationConstI32(uint32(val)),
)
case wasm.OpcodeI64Const:
val, num, err := leb128.LoadInt64(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i64.const value: %v", err)
}
c.pc += num
c.emit(
newOperationConstI64(uint64(val)),
)
case wasm.OpcodeF32Const:
v := math.Float32frombits(binary.LittleEndian.Uint32(c.body[c.pc+1:]))
c.pc += 4
c.emit(
newOperationConstF32(v),
)
case wasm.OpcodeF64Const:
v := math.Float64frombits(binary.LittleEndian.Uint64(c.body[c.pc+1:]))
c.pc += 8
c.emit(
newOperationConstF64(v),
)
case wasm.OpcodeI32Eqz:
c.emit(
newOperationEqz(unsignedInt32),
)
case wasm.OpcodeI32Eq:
c.emit(
newOperationEq(unsignedTypeI32),
)
case wasm.OpcodeI32Ne:
c.emit(
newOperationNe(unsignedTypeI32),
)
case wasm.OpcodeI32LtS:
c.emit(
newOperationLt(signedTypeInt32),
)
case wasm.OpcodeI32LtU:
c.emit(
newOperationLt(signedTypeUint32),
)
case wasm.OpcodeI32GtS:
c.emit(
newOperationGt(signedTypeInt32),
)
case wasm.OpcodeI32GtU:
c.emit(
newOperationGt(signedTypeUint32),
)
case wasm.OpcodeI32LeS:
c.emit(
newOperationLe(signedTypeInt32),
)
case wasm.OpcodeI32LeU:
c.emit(
newOperationLe(signedTypeUint32),
)
case wasm.OpcodeI32GeS:
c.emit(
newOperationGe(signedTypeInt32),
)
case wasm.OpcodeI32GeU:
c.emit(
newOperationGe(signedTypeUint32),
)
case wasm.OpcodeI64Eqz:
c.emit(
newOperationEqz(unsignedInt64),
)
case wasm.OpcodeI64Eq:
c.emit(
newOperationEq(unsignedTypeI64),
)
case wasm.OpcodeI64Ne:
c.emit(
newOperationNe(unsignedTypeI64),
)
case wasm.OpcodeI64LtS:
c.emit(
newOperationLt(signedTypeInt64),
)
case wasm.OpcodeI64LtU:
c.emit(
newOperationLt(signedTypeUint64),
)
case wasm.OpcodeI64GtS:
c.emit(
newOperationGt(signedTypeInt64),
)
case wasm.OpcodeI64GtU:
c.emit(
newOperationGt(signedTypeUint64),
)
case wasm.OpcodeI64LeS:
c.emit(
newOperationLe(signedTypeInt64),
)
case wasm.OpcodeI64LeU:
c.emit(
newOperationLe(signedTypeUint64),
)
case wasm.OpcodeI64GeS:
c.emit(
newOperationGe(signedTypeInt64),
)
case wasm.OpcodeI64GeU:
c.emit(
newOperationGe(signedTypeUint64),
)
case wasm.OpcodeF32Eq:
c.emit(
newOperationEq(unsignedTypeF32),
)
case wasm.OpcodeF32Ne:
c.emit(
newOperationNe(unsignedTypeF32),
)
case wasm.OpcodeF32Lt:
c.emit(
newOperationLt(signedTypeFloat32),
)
case wasm.OpcodeF32Gt:
c.emit(
newOperationGt(signedTypeFloat32),
)
case wasm.OpcodeF32Le:
c.emit(
newOperationLe(signedTypeFloat32),
)
case wasm.OpcodeF32Ge:
c.emit(
newOperationGe(signedTypeFloat32),
)
case wasm.OpcodeF64Eq:
c.emit(
newOperationEq(unsignedTypeF64),
)
case wasm.OpcodeF64Ne:
c.emit(
newOperationNe(unsignedTypeF64),
)
case wasm.OpcodeF64Lt:
c.emit(
newOperationLt(signedTypeFloat64),
)
case wasm.OpcodeF64Gt:
c.emit(
newOperationGt(signedTypeFloat64),
)
case wasm.OpcodeF64Le:
c.emit(
newOperationLe(signedTypeFloat64),
)
case wasm.OpcodeF64Ge:
c.emit(
newOperationGe(signedTypeFloat64),
)
case wasm.OpcodeI32Clz:
c.emit(
newOperationClz(unsignedInt32),
)
case wasm.OpcodeI32Ctz:
c.emit(
newOperationCtz(unsignedInt32),
)
case wasm.OpcodeI32Popcnt:
c.emit(
newOperationPopcnt(unsignedInt32),
)
case wasm.OpcodeI32Add:
c.emit(
newOperationAdd(unsignedTypeI32),
)
case wasm.OpcodeI32Sub:
c.emit(
newOperationSub(unsignedTypeI32),
)
case wasm.OpcodeI32Mul:
c.emit(
newOperationMul(unsignedTypeI32),
)
case wasm.OpcodeI32DivS:
c.emit(
newOperationDiv(signedTypeInt32),
)
case wasm.OpcodeI32DivU:
c.emit(
newOperationDiv(signedTypeUint32),
)
case wasm.OpcodeI32RemS:
c.emit(
newOperationRem(signedInt32),
)
case wasm.OpcodeI32RemU:
c.emit(
newOperationRem(signedUint32),
)
case wasm.OpcodeI32And:
c.emit(
newOperationAnd(unsignedInt32),
)
case wasm.OpcodeI32Or:
c.emit(
newOperationOr(unsignedInt32),
)
case wasm.OpcodeI32Xor:
c.emit(
newOperationXor(unsignedInt64),
)
case wasm.OpcodeI32Shl:
c.emit(
newOperationShl(unsignedInt32),
)
case wasm.OpcodeI32ShrS:
c.emit(
newOperationShr(signedInt32),
)
case wasm.OpcodeI32ShrU:
c.emit(
newOperationShr(signedUint32),
)
case wasm.OpcodeI32Rotl:
c.emit(
newOperationRotl(unsignedInt32),
)
case wasm.OpcodeI32Rotr:
c.emit(
newOperationRotr(unsignedInt32),
)
case wasm.OpcodeI64Clz:
c.emit(
newOperationClz(unsignedInt64),
)
case wasm.OpcodeI64Ctz:
c.emit(
newOperationCtz(unsignedInt64),
)
case wasm.OpcodeI64Popcnt:
c.emit(
newOperationPopcnt(unsignedInt64),
)
case wasm.OpcodeI64Add:
c.emit(
newOperationAdd(unsignedTypeI64),
)
case wasm.OpcodeI64Sub:
c.emit(
newOperationSub(unsignedTypeI64),
)
case wasm.OpcodeI64Mul:
c.emit(
newOperationMul(unsignedTypeI64),
)
case wasm.OpcodeI64DivS:
c.emit(
newOperationDiv(signedTypeInt64),
)
case wasm.OpcodeI64DivU:
c.emit(
newOperationDiv(signedTypeUint64),
)
case wasm.OpcodeI64RemS:
c.emit(
newOperationRem(signedInt64),
)
case wasm.OpcodeI64RemU:
c.emit(
newOperationRem(signedUint64),
)
case wasm.OpcodeI64And:
c.emit(
newOperationAnd(unsignedInt64),
)
case wasm.OpcodeI64Or:
c.emit(
newOperationOr(unsignedInt64),
)
case wasm.OpcodeI64Xor:
c.emit(
newOperationXor(unsignedInt64),
)
case wasm.OpcodeI64Shl:
c.emit(
newOperationShl(unsignedInt64),
)
case wasm.OpcodeI64ShrS:
c.emit(
newOperationShr(signedInt64),
)
case wasm.OpcodeI64ShrU:
c.emit(
newOperationShr(signedUint64),
)
case wasm.OpcodeI64Rotl:
c.emit(
newOperationRotl(unsignedInt64),
)
case wasm.OpcodeI64Rotr:
c.emit(
newOperationRotr(unsignedInt64),
)
case wasm.OpcodeF32Abs:
c.emit(
newOperationAbs(f32),
)
case wasm.OpcodeF32Neg:
c.emit(
newOperationNeg(f32),
)
case wasm.OpcodeF32Ceil:
c.emit(
newOperationCeil(f32),
)
case wasm.OpcodeF32Floor:
c.emit(
newOperationFloor(f32),
)
case wasm.OpcodeF32Trunc:
c.emit(
newOperationTrunc(f32),
)
case wasm.OpcodeF32Nearest:
c.emit(
newOperationNearest(f32),
)
case wasm.OpcodeF32Sqrt:
c.emit(
newOperationSqrt(f32),
)
case wasm.OpcodeF32Add:
c.emit(
newOperationAdd(unsignedTypeF32),
)
case wasm.OpcodeF32Sub:
c.emit(
newOperationSub(unsignedTypeF32),
)
case wasm.OpcodeF32Mul:
c.emit(
newOperationMul(unsignedTypeF32),
)
case wasm.OpcodeF32Div:
c.emit(
newOperationDiv(signedTypeFloat32),
)
case wasm.OpcodeF32Min:
c.emit(
newOperationMin(f32),
)
case wasm.OpcodeF32Max:
c.emit(
newOperationMax(f32),
)
case wasm.OpcodeF32Copysign:
c.emit(
newOperationCopysign(f32),
)
case wasm.OpcodeF64Abs:
c.emit(
newOperationAbs(f64),
)
case wasm.OpcodeF64Neg:
c.emit(
newOperationNeg(f64),
)
case wasm.OpcodeF64Ceil:
c.emit(
newOperationCeil(f64),
)
case wasm.OpcodeF64Floor:
c.emit(
newOperationFloor(f64),
)
case wasm.OpcodeF64Trunc:
c.emit(
newOperationTrunc(f64),
)
case wasm.OpcodeF64Nearest:
c.emit(
newOperationNearest(f64),
)
case wasm.OpcodeF64Sqrt:
c.emit(
newOperationSqrt(f64),
)
case wasm.OpcodeF64Add:
c.emit(
newOperationAdd(unsignedTypeF64),
)
case wasm.OpcodeF64Sub:
c.emit(
newOperationSub(unsignedTypeF64),
)
case wasm.OpcodeF64Mul:
c.emit(
newOperationMul(unsignedTypeF64),
)
case wasm.OpcodeF64Div:
c.emit(
newOperationDiv(signedTypeFloat64),
)
case wasm.OpcodeF64Min:
c.emit(
newOperationMin(f64),
)
case wasm.OpcodeF64Max:
c.emit(
newOperationMax(f64),
)
case wasm.OpcodeF64Copysign:
c.emit(
newOperationCopysign(f64),
)
case wasm.OpcodeI32WrapI64:
c.emit(
newOperationI32WrapFromI64(),
)
case wasm.OpcodeI32TruncF32S:
c.emit(
newOperationITruncFromF(f32, signedInt32, false),
)
case wasm.OpcodeI32TruncF32U:
c.emit(
newOperationITruncFromF(f32, signedUint32, false),
)
case wasm.OpcodeI32TruncF64S:
c.emit(
newOperationITruncFromF(f64, signedInt32, false),
)
case wasm.OpcodeI32TruncF64U:
c.emit(
newOperationITruncFromF(f64, signedUint32, false),
)
case wasm.OpcodeI64ExtendI32S:
c.emit(
newOperationExtend(true),
)
case wasm.OpcodeI64ExtendI32U:
c.emit(
newOperationExtend(false),
)
case wasm.OpcodeI64TruncF32S:
c.emit(
newOperationITruncFromF(f32, signedInt64, false),
)
case wasm.OpcodeI64TruncF32U:
c.emit(
newOperationITruncFromF(f32, signedUint64, false),
)
case wasm.OpcodeI64TruncF64S:
c.emit(
newOperationITruncFromF(f64, signedInt64, false),
)
case wasm.OpcodeI64TruncF64U:
c.emit(
newOperationITruncFromF(f64, signedUint64, false),
)
case wasm.OpcodeF32ConvertI32S:
c.emit(
newOperationFConvertFromI(signedInt32, f32),
)
case wasm.OpcodeF32ConvertI32U:
c.emit(
newOperationFConvertFromI(signedUint32, f32),
)
case wasm.OpcodeF32ConvertI64S:
c.emit(
newOperationFConvertFromI(signedInt64, f32),
)
case wasm.OpcodeF32ConvertI64U:
c.emit(
newOperationFConvertFromI(signedUint64, f32),
)
case wasm.OpcodeF32DemoteF64:
c.emit(
newOperationF32DemoteFromF64(),
)
case wasm.OpcodeF64ConvertI32S:
c.emit(
newOperationFConvertFromI(signedInt32, f64),
)
case wasm.OpcodeF64ConvertI32U:
c.emit(
newOperationFConvertFromI(signedUint32, f64),
)
case wasm.OpcodeF64ConvertI64S:
c.emit(
newOperationFConvertFromI(signedInt64, f64),
)
case wasm.OpcodeF64ConvertI64U:
c.emit(
newOperationFConvertFromI(signedUint64, f64),
)
case wasm.OpcodeF64PromoteF32:
c.emit(
newOperationF64PromoteFromF32(),
)
case wasm.OpcodeI32ReinterpretF32:
c.emit(
newOperationI32ReinterpretFromF32(),
)
case wasm.OpcodeI64ReinterpretF64:
c.emit(
newOperationI64ReinterpretFromF64(),
)
case wasm.OpcodeF32ReinterpretI32:
c.emit(
newOperationF32ReinterpretFromI32(),
)
case wasm.OpcodeF64ReinterpretI64:
c.emit(
newOperationF64ReinterpretFromI64(),
)
case wasm.OpcodeI32Extend8S:
c.emit(
newOperationSignExtend32From8(),
)
case wasm.OpcodeI32Extend16S:
c.emit(
newOperationSignExtend32From16(),
)
case wasm.OpcodeI64Extend8S:
c.emit(
newOperationSignExtend64From8(),
)
case wasm.OpcodeI64Extend16S:
c.emit(
newOperationSignExtend64From16(),
)
case wasm.OpcodeI64Extend32S:
c.emit(
newOperationSignExtend64From32(),
)
case wasm.OpcodeRefFunc:
c.pc++
index, num, err := leb128.LoadUint32(c.body[c.pc:])
if err != nil {
return fmt.Errorf("failed to read function index for ref.func: %v", err)
}
c.pc += num - 1
c.emit(
newOperationRefFunc(index),
)
case wasm.OpcodeRefNull:
c.pc++ // Skip the type of reftype as every ref value is opaque pointer.
c.emit(
newOperationConstI64(0),
)
case wasm.OpcodeRefIsNull:
// Simply compare the opaque pointer (i64) with zero.
c.emit(
newOperationEqz(unsignedInt64),
)
case wasm.OpcodeTableGet:
c.pc++
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc:])
if err != nil {
return fmt.Errorf("failed to read function index for table.get: %v", err)
}
c.pc += num - 1
c.emit(
newOperationTableGet(tableIndex),
)
case wasm.OpcodeTableSet:
c.pc++
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc:])
if err != nil {
return fmt.Errorf("failed to read function index for table.set: %v", err)
}
c.pc += num - 1
c.emit(
newOperationTableSet(tableIndex),
)
case wasm.OpcodeMiscPrefix:
c.pc++
// A misc opcode is encoded as an unsigned variable 32-bit integer.
miscOp, num, err := leb128.LoadUint32(c.body[c.pc:])
if err != nil {
return fmt.Errorf("failed to read misc opcode: %v", err)
}
c.pc += num - 1
switch byte(miscOp) {
case wasm.OpcodeMiscI32TruncSatF32S:
c.emit(
newOperationITruncFromF(f32, signedInt32, true),
)
case wasm.OpcodeMiscI32TruncSatF32U:
c.emit(
newOperationITruncFromF(f32, signedUint32, true),
)
case wasm.OpcodeMiscI32TruncSatF64S:
c.emit(
newOperationITruncFromF(f64, signedInt32, true),
)
case wasm.OpcodeMiscI32TruncSatF64U:
c.emit(
newOperationITruncFromF(f64, signedUint32, true),
)
case wasm.OpcodeMiscI64TruncSatF32S:
c.emit(
newOperationITruncFromF(f32, signedInt64, true),
)
case wasm.OpcodeMiscI64TruncSatF32U:
c.emit(
newOperationITruncFromF(f32, signedUint64, true),
)
case wasm.OpcodeMiscI64TruncSatF64S:
c.emit(
newOperationITruncFromF(f64, signedInt64, true),
)
case wasm.OpcodeMiscI64TruncSatF64U:
c.emit(
newOperationITruncFromF(f64, signedUint64, true),
)
case wasm.OpcodeMiscMemoryInit:
c.result.UsesMemory = true
dataIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num + 1 // +1 to skip the memory index which is fixed to zero.
c.emit(
newOperationMemoryInit(dataIndex),
)
case wasm.OpcodeMiscDataDrop:
dataIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationDataDrop(dataIndex),
)
case wasm.OpcodeMiscMemoryCopy:
c.result.UsesMemory = true
c.pc += 2 // +2 to skip two memory indexes which are fixed to zero.
c.emit(
newOperationMemoryCopy(),
)
case wasm.OpcodeMiscMemoryFill:
c.result.UsesMemory = true
c.pc += 1 // +1 to skip the memory index which is fixed to zero.
c.emit(
newOperationMemoryFill(),
)
case wasm.OpcodeMiscTableInit:
elemIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
// Read table index which is fixed to zero currently.
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationTableInit(elemIndex, tableIndex),
)
case wasm.OpcodeMiscElemDrop:
elemIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationElemDrop(elemIndex),
)
case wasm.OpcodeMiscTableCopy:
// Read the source table inde.g.
dst, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
// Read the destination table inde.g.
src, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationTableCopy(src, dst),
)
case wasm.OpcodeMiscTableGrow:
// Read the source table inde.g.
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationTableGrow(tableIndex),
)
case wasm.OpcodeMiscTableSize:
// Read the source table inde.g.
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationTableSize(tableIndex),
)
case wasm.OpcodeMiscTableFill:
// Read the source table index.
tableIndex, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return fmt.Errorf("reading i32.const value: %v", err)
}
c.pc += num
c.emit(
newOperationTableFill(tableIndex),
)
default:
return fmt.Errorf("unsupported misc instruction in interpreterir: 0x%x", op)
}
case wasm.OpcodeVecPrefix:
c.pc++
switch vecOp := c.body[c.pc]; vecOp {
case wasm.OpcodeVecV128Const:
c.pc++
lo := binary.LittleEndian.Uint64(c.body[c.pc : c.pc+8])
c.pc += 8
hi := binary.LittleEndian.Uint64(c.body[c.pc : c.pc+8])
c.emit(
newOperationV128Const(lo, hi),
)
c.pc += 7
case wasm.OpcodeVecV128Load:
arg, err := c.readMemoryArg(wasm.OpcodeI32LoadName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType128, arg),
)
case wasm.OpcodeVecV128Load8x8s:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load8x8SName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType8x8s, arg),
)
case wasm.OpcodeVecV128Load8x8u:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load8x8UName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType8x8u, arg),
)
case wasm.OpcodeVecV128Load16x4s:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load16x4SName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType16x4s, arg),
)
case wasm.OpcodeVecV128Load16x4u:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load16x4UName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType16x4u, arg),
)
case wasm.OpcodeVecV128Load32x2s:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load32x2SName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType32x2s, arg),
)
case wasm.OpcodeVecV128Load32x2u:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load32x2UName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType32x2u, arg),
)
case wasm.OpcodeVecV128Load8Splat:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load8SplatName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType8Splat, arg),
)
case wasm.OpcodeVecV128Load16Splat:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load16SplatName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType16Splat, arg),
)
case wasm.OpcodeVecV128Load32Splat:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load32SplatName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType32Splat, arg),
)
case wasm.OpcodeVecV128Load64Splat:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load64SplatName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType64Splat, arg),
)
case wasm.OpcodeVecV128Load32zero:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load32zeroName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType32zero, arg),
)
case wasm.OpcodeVecV128Load64zero:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load64zeroName)
if err != nil {
return err
}
c.emit(
newOperationV128Load(v128LoadType64zero, arg),
)
case wasm.OpcodeVecV128Load8Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load8LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128LoadLane(laneIndex, 8, arg),
)
case wasm.OpcodeVecV128Load16Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load16LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128LoadLane(laneIndex, 16, arg),
)
case wasm.OpcodeVecV128Load32Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load32LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128LoadLane(laneIndex, 32, arg),
)
case wasm.OpcodeVecV128Load64Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Load64LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128LoadLane(laneIndex, 64, arg),
)
case wasm.OpcodeVecV128Store:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128StoreName)
if err != nil {
return err
}
c.emit(
newOperationV128Store(arg),
)
case wasm.OpcodeVecV128Store8Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Store8LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128StoreLane(laneIndex, 8, arg),
)
case wasm.OpcodeVecV128Store16Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Store16LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128StoreLane(laneIndex, 16, arg),
)
case wasm.OpcodeVecV128Store32Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Store32LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128StoreLane(laneIndex, 32, arg),
)
case wasm.OpcodeVecV128Store64Lane:
arg, err := c.readMemoryArg(wasm.OpcodeVecV128Store64LaneName)
if err != nil {
return err
}
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128StoreLane(laneIndex, 64, arg),
)
case wasm.OpcodeVecI8x16ExtractLaneS:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, true, shapeI8x16),
)
case wasm.OpcodeVecI8x16ExtractLaneU:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeI8x16),
)
case wasm.OpcodeVecI16x8ExtractLaneS:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, true, shapeI16x8),
)
case wasm.OpcodeVecI16x8ExtractLaneU:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeI16x8),
)
case wasm.OpcodeVecI32x4ExtractLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeI32x4),
)
case wasm.OpcodeVecI64x2ExtractLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeI64x2),
)
case wasm.OpcodeVecF32x4ExtractLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeF32x4),
)
case wasm.OpcodeVecF64x2ExtractLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ExtractLane(laneIndex, false, shapeF64x2),
)
case wasm.OpcodeVecI8x16ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeI8x16),
)
case wasm.OpcodeVecI16x8ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeI16x8),
)
case wasm.OpcodeVecI32x4ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeI32x4),
)
case wasm.OpcodeVecI64x2ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeI64x2),
)
case wasm.OpcodeVecF32x4ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeF32x4),
)
case wasm.OpcodeVecF64x2ReplaceLane:
c.pc++
laneIndex := c.body[c.pc]
c.emit(
newOperationV128ReplaceLane(laneIndex, shapeF64x2),
)
case wasm.OpcodeVecI8x16Splat:
c.emit(
newOperationV128Splat(shapeI8x16),
)
case wasm.OpcodeVecI16x8Splat:
c.emit(
newOperationV128Splat(shapeI16x8),
)
case wasm.OpcodeVecI32x4Splat:
c.emit(
newOperationV128Splat(shapeI32x4),
)
case wasm.OpcodeVecI64x2Splat:
c.emit(
newOperationV128Splat(shapeI64x2),
)
case wasm.OpcodeVecF32x4Splat:
c.emit(
newOperationV128Splat(shapeF32x4),
)
case wasm.OpcodeVecF64x2Splat:
c.emit(
newOperationV128Splat(shapeF64x2),
)
case wasm.OpcodeVecI8x16Swizzle:
c.emit(
newOperationV128Swizzle(),
)
case wasm.OpcodeVecV128i8x16Shuffle:
c.pc++
lanes := make([]uint64, 16)
for i := uint64(0); i < 16; i++ {
lanes[i] = uint64(c.body[c.pc+i])
}
op := newOperationV128Shuffle(lanes)
c.emit(op)
c.pc += 15
case wasm.OpcodeVecV128AnyTrue:
c.emit(
newOperationV128AnyTrue(),
)
case wasm.OpcodeVecI8x16AllTrue:
c.emit(
newOperationV128AllTrue(shapeI8x16),
)
case wasm.OpcodeVecI16x8AllTrue:
c.emit(
newOperationV128AllTrue(shapeI16x8),
)
case wasm.OpcodeVecI32x4AllTrue:
c.emit(
newOperationV128AllTrue(shapeI32x4),
)
case wasm.OpcodeVecI64x2AllTrue:
c.emit(
newOperationV128AllTrue(shapeI64x2),
)
case wasm.OpcodeVecI8x16BitMask:
c.emit(
newOperationV128BitMask(shapeI8x16),
)
case wasm.OpcodeVecI16x8BitMask:
c.emit(
newOperationV128BitMask(shapeI16x8),
)
case wasm.OpcodeVecI32x4BitMask:
c.emit(
newOperationV128BitMask(shapeI32x4),
)
case wasm.OpcodeVecI64x2BitMask:
c.emit(
newOperationV128BitMask(shapeI64x2),
)
case wasm.OpcodeVecV128And:
c.emit(
newOperationV128And(),
)
case wasm.OpcodeVecV128Not:
c.emit(
newOperationV128Not(),
)
case wasm.OpcodeVecV128Or:
c.emit(
newOperationV128Or(),
)
case wasm.OpcodeVecV128Xor:
c.emit(
newOperationV128Xor(),
)
case wasm.OpcodeVecV128Bitselect:
c.emit(
newOperationV128Bitselect(),
)
case wasm.OpcodeVecV128AndNot:
c.emit(
newOperationV128AndNot(),
)
case wasm.OpcodeVecI8x16Shl:
c.emit(
newOperationV128Shl(shapeI8x16),
)
case wasm.OpcodeVecI8x16ShrS:
c.emit(
newOperationV128Shr(shapeI8x16, true),
)
case wasm.OpcodeVecI8x16ShrU:
c.emit(
newOperationV128Shr(shapeI8x16, false),
)
case wasm.OpcodeVecI16x8Shl:
c.emit(
newOperationV128Shl(shapeI16x8),
)
case wasm.OpcodeVecI16x8ShrS:
c.emit(
newOperationV128Shr(shapeI16x8, true),
)
case wasm.OpcodeVecI16x8ShrU:
c.emit(
newOperationV128Shr(shapeI16x8, false),
)
case wasm.OpcodeVecI32x4Shl:
c.emit(
newOperationV128Shl(shapeI32x4),
)
case wasm.OpcodeVecI32x4ShrS:
c.emit(
newOperationV128Shr(shapeI32x4, true),
)
case wasm.OpcodeVecI32x4ShrU:
c.emit(
newOperationV128Shr(shapeI32x4, false),
)
case wasm.OpcodeVecI64x2Shl:
c.emit(
newOperationV128Shl(shapeI64x2),
)
case wasm.OpcodeVecI64x2ShrS:
c.emit(
newOperationV128Shr(shapeI64x2, true),
)
case wasm.OpcodeVecI64x2ShrU:
c.emit(
newOperationV128Shr(shapeI64x2, false),
)
case wasm.OpcodeVecI8x16Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16Eq),
)
case wasm.OpcodeVecI8x16Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16Ne),
)
case wasm.OpcodeVecI8x16LtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16LtS),
)
case wasm.OpcodeVecI8x16LtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16LtU),
)
case wasm.OpcodeVecI8x16GtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16GtS),
)
case wasm.OpcodeVecI8x16GtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16GtU),
)
case wasm.OpcodeVecI8x16LeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16LeS),
)
case wasm.OpcodeVecI8x16LeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16LeU),
)
case wasm.OpcodeVecI8x16GeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16GeS),
)
case wasm.OpcodeVecI8x16GeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI8x16GeU),
)
case wasm.OpcodeVecI16x8Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8Eq),
)
case wasm.OpcodeVecI16x8Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8Ne),
)
case wasm.OpcodeVecI16x8LtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8LtS),
)
case wasm.OpcodeVecI16x8LtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8LtU),
)
case wasm.OpcodeVecI16x8GtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8GtS),
)
case wasm.OpcodeVecI16x8GtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8GtU),
)
case wasm.OpcodeVecI16x8LeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8LeS),
)
case wasm.OpcodeVecI16x8LeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8LeU),
)
case wasm.OpcodeVecI16x8GeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8GeS),
)
case wasm.OpcodeVecI16x8GeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI16x8GeU),
)
case wasm.OpcodeVecI32x4Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4Eq),
)
case wasm.OpcodeVecI32x4Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4Ne),
)
case wasm.OpcodeVecI32x4LtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4LtS),
)
case wasm.OpcodeVecI32x4LtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4LtU),
)
case wasm.OpcodeVecI32x4GtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4GtS),
)
case wasm.OpcodeVecI32x4GtU:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4GtU),
)
case wasm.OpcodeVecI32x4LeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4LeS),
)
case wasm.OpcodeVecI32x4LeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4LeU),
)
case wasm.OpcodeVecI32x4GeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4GeS),
)
case wasm.OpcodeVecI32x4GeU:
c.emit(
newOperationV128Cmp(v128CmpTypeI32x4GeU),
)
case wasm.OpcodeVecI64x2Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2Eq),
)
case wasm.OpcodeVecI64x2Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2Ne),
)
case wasm.OpcodeVecI64x2LtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2LtS),
)
case wasm.OpcodeVecI64x2GtS:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2GtS),
)
case wasm.OpcodeVecI64x2LeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2LeS),
)
case wasm.OpcodeVecI64x2GeS:
c.emit(
newOperationV128Cmp(v128CmpTypeI64x2GeS),
)
case wasm.OpcodeVecF32x4Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Eq),
)
case wasm.OpcodeVecF32x4Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Ne),
)
case wasm.OpcodeVecF32x4Lt:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Lt),
)
case wasm.OpcodeVecF32x4Gt:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Gt),
)
case wasm.OpcodeVecF32x4Le:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Le),
)
case wasm.OpcodeVecF32x4Ge:
c.emit(
newOperationV128Cmp(v128CmpTypeF32x4Ge),
)
case wasm.OpcodeVecF64x2Eq:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Eq),
)
case wasm.OpcodeVecF64x2Ne:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Ne),
)
case wasm.OpcodeVecF64x2Lt:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Lt),
)
case wasm.OpcodeVecF64x2Gt:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Gt),
)
case wasm.OpcodeVecF64x2Le:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Le),
)
case wasm.OpcodeVecF64x2Ge:
c.emit(
newOperationV128Cmp(v128CmpTypeF64x2Ge),
)
case wasm.OpcodeVecI8x16Neg:
c.emit(
newOperationV128Neg(shapeI8x16),
)
case wasm.OpcodeVecI16x8Neg:
c.emit(
newOperationV128Neg(shapeI16x8),
)
case wasm.OpcodeVecI32x4Neg:
c.emit(
newOperationV128Neg(shapeI32x4),
)
case wasm.OpcodeVecI64x2Neg:
c.emit(
newOperationV128Neg(shapeI64x2),
)
case wasm.OpcodeVecF32x4Neg:
c.emit(
newOperationV128Neg(shapeF32x4),
)
case wasm.OpcodeVecF64x2Neg:
c.emit(
newOperationV128Neg(shapeF64x2),
)
case wasm.OpcodeVecI8x16Add:
c.emit(
newOperationV128Add(shapeI8x16),
)
case wasm.OpcodeVecI16x8Add:
c.emit(
newOperationV128Add(shapeI16x8),
)
case wasm.OpcodeVecI32x4Add:
c.emit(
newOperationV128Add(shapeI32x4),
)
case wasm.OpcodeVecI64x2Add:
c.emit(
newOperationV128Add(shapeI64x2),
)
case wasm.OpcodeVecF32x4Add:
c.emit(
newOperationV128Add(shapeF32x4),
)
case wasm.OpcodeVecF64x2Add:
c.emit(
newOperationV128Add(shapeF64x2),
)
case wasm.OpcodeVecI8x16Sub:
c.emit(
newOperationV128Sub(shapeI8x16),
)
case wasm.OpcodeVecI16x8Sub:
c.emit(
newOperationV128Sub(shapeI16x8),
)
case wasm.OpcodeVecI32x4Sub:
c.emit(
newOperationV128Sub(shapeI32x4),
)
case wasm.OpcodeVecI64x2Sub:
c.emit(
newOperationV128Sub(shapeI64x2),
)
case wasm.OpcodeVecF32x4Sub:
c.emit(
newOperationV128Sub(shapeF32x4),
)
case wasm.OpcodeVecF64x2Sub:
c.emit(
newOperationV128Sub(shapeF64x2),
)
case wasm.OpcodeVecI8x16AddSatS:
c.emit(
newOperationV128AddSat(shapeI8x16, true),
)
case wasm.OpcodeVecI8x16AddSatU:
c.emit(
newOperationV128AddSat(shapeI8x16, false),
)
case wasm.OpcodeVecI16x8AddSatS:
c.emit(
newOperationV128AddSat(shapeI16x8, true),
)
case wasm.OpcodeVecI16x8AddSatU:
c.emit(
newOperationV128AddSat(shapeI16x8, false),
)
case wasm.OpcodeVecI8x16SubSatS:
c.emit(
newOperationV128SubSat(shapeI8x16, true),
)
case wasm.OpcodeVecI8x16SubSatU:
c.emit(
newOperationV128SubSat(shapeI8x16, false),
)
case wasm.OpcodeVecI16x8SubSatS:
c.emit(
newOperationV128SubSat(shapeI16x8, true),
)
case wasm.OpcodeVecI16x8SubSatU:
c.emit(
newOperationV128SubSat(shapeI16x8, false),
)
case wasm.OpcodeVecI16x8Mul:
c.emit(
newOperationV128Mul(shapeI16x8),
)
case wasm.OpcodeVecI32x4Mul:
c.emit(
newOperationV128Mul(shapeI32x4),
)
case wasm.OpcodeVecI64x2Mul:
c.emit(
newOperationV128Mul(shapeI64x2),
)
case wasm.OpcodeVecF32x4Mul:
c.emit(
newOperationV128Mul(shapeF32x4),
)
case wasm.OpcodeVecF64x2Mul:
c.emit(
newOperationV128Mul(shapeF64x2),
)
case wasm.OpcodeVecF32x4Sqrt:
c.emit(
newOperationV128Sqrt(shapeF32x4),
)
case wasm.OpcodeVecF64x2Sqrt:
c.emit(
newOperationV128Sqrt(shapeF64x2),
)
case wasm.OpcodeVecF32x4Div:
c.emit(
newOperationV128Div(shapeF32x4),
)
case wasm.OpcodeVecF64x2Div:
c.emit(
newOperationV128Div(shapeF64x2),
)
case wasm.OpcodeVecI8x16Abs:
c.emit(
newOperationV128Abs(shapeI8x16),
)
case wasm.OpcodeVecI8x16Popcnt:
c.emit(
newOperationV128Popcnt(shapeI8x16),
)
case wasm.OpcodeVecI16x8Abs:
c.emit(
newOperationV128Abs(shapeI16x8),
)
case wasm.OpcodeVecI32x4Abs:
c.emit(
newOperationV128Abs(shapeI32x4),
)
case wasm.OpcodeVecI64x2Abs:
c.emit(
newOperationV128Abs(shapeI64x2),
)
case wasm.OpcodeVecF32x4Abs:
c.emit(
newOperationV128Abs(shapeF32x4),
)
case wasm.OpcodeVecF64x2Abs:
c.emit(
newOperationV128Abs(shapeF64x2),
)
case wasm.OpcodeVecI8x16MinS:
c.emit(
newOperationV128Min(shapeI8x16, true),
)
case wasm.OpcodeVecI8x16MinU:
c.emit(
newOperationV128Min(shapeI8x16, false),
)
case wasm.OpcodeVecI8x16MaxS:
c.emit(
newOperationV128Max(shapeI8x16, true),
)
case wasm.OpcodeVecI8x16MaxU:
c.emit(
newOperationV128Max(shapeI8x16, false),
)
case wasm.OpcodeVecI8x16AvgrU:
c.emit(
newOperationV128AvgrU(shapeI8x16),
)
case wasm.OpcodeVecI16x8MinS:
c.emit(
newOperationV128Min(shapeI16x8, true),
)
case wasm.OpcodeVecI16x8MinU:
c.emit(
newOperationV128Min(shapeI16x8, false),
)
case wasm.OpcodeVecI16x8MaxS:
c.emit(
newOperationV128Max(shapeI16x8, true),
)
case wasm.OpcodeVecI16x8MaxU:
c.emit(
newOperationV128Max(shapeI16x8, false),
)
case wasm.OpcodeVecI16x8AvgrU:
c.emit(
newOperationV128AvgrU(shapeI16x8),
)
case wasm.OpcodeVecI32x4MinS:
c.emit(
newOperationV128Min(shapeI32x4, true),
)
case wasm.OpcodeVecI32x4MinU:
c.emit(
newOperationV128Min(shapeI32x4, false),
)
case wasm.OpcodeVecI32x4MaxS:
c.emit(
newOperationV128Max(shapeI32x4, true),
)
case wasm.OpcodeVecI32x4MaxU:
c.emit(
newOperationV128Max(shapeI32x4, false),
)
case wasm.OpcodeVecF32x4Min:
c.emit(
newOperationV128Min(shapeF32x4, false),
)
case wasm.OpcodeVecF32x4Max:
c.emit(
newOperationV128Max(shapeF32x4, false),
)
case wasm.OpcodeVecF64x2Min:
c.emit(
newOperationV128Min(shapeF64x2, false),
)
case wasm.OpcodeVecF64x2Max:
c.emit(
newOperationV128Max(shapeF64x2, false),
)
case wasm.OpcodeVecF32x4Pmin:
c.emit(
newOperationV128Pmin(shapeF32x4),
)
case wasm.OpcodeVecF32x4Pmax:
c.emit(
newOperationV128Pmax(shapeF32x4),
)
case wasm.OpcodeVecF64x2Pmin:
c.emit(
newOperationV128Pmin(shapeF64x2),
)
case wasm.OpcodeVecF64x2Pmax:
c.emit(
newOperationV128Pmax(shapeF64x2),
)
case wasm.OpcodeVecF32x4Ceil:
c.emit(
newOperationV128Ceil(shapeF32x4),
)
case wasm.OpcodeVecF32x4Floor:
c.emit(
newOperationV128Floor(shapeF32x4),
)
case wasm.OpcodeVecF32x4Trunc:
c.emit(
newOperationV128Trunc(shapeF32x4),
)
case wasm.OpcodeVecF32x4Nearest:
c.emit(
newOperationV128Nearest(shapeF32x4),
)
case wasm.OpcodeVecF64x2Ceil:
c.emit(
newOperationV128Ceil(shapeF64x2),
)
case wasm.OpcodeVecF64x2Floor:
c.emit(
newOperationV128Floor(shapeF64x2),
)
case wasm.OpcodeVecF64x2Trunc:
c.emit(
newOperationV128Trunc(shapeF64x2),
)
case wasm.OpcodeVecF64x2Nearest:
c.emit(
newOperationV128Nearest(shapeF64x2),
)
case wasm.OpcodeVecI16x8ExtendLowI8x16S:
c.emit(
newOperationV128Extend(shapeI8x16, true, true),
)
case wasm.OpcodeVecI16x8ExtendHighI8x16S:
c.emit(
newOperationV128Extend(shapeI8x16, true, false),
)
case wasm.OpcodeVecI16x8ExtendLowI8x16U:
c.emit(
newOperationV128Extend(shapeI8x16, false, true),
)
case wasm.OpcodeVecI16x8ExtendHighI8x16U:
c.emit(
newOperationV128Extend(shapeI8x16, false, false),
)
case wasm.OpcodeVecI32x4ExtendLowI16x8S:
c.emit(
newOperationV128Extend(shapeI16x8, true, true),
)
case wasm.OpcodeVecI32x4ExtendHighI16x8S:
c.emit(
newOperationV128Extend(shapeI16x8, true, false),
)
case wasm.OpcodeVecI32x4ExtendLowI16x8U:
c.emit(
newOperationV128Extend(shapeI16x8, false, true),
)
case wasm.OpcodeVecI32x4ExtendHighI16x8U:
c.emit(
newOperationV128Extend(shapeI16x8, false, false),
)
case wasm.OpcodeVecI64x2ExtendLowI32x4S:
c.emit(
newOperationV128Extend(shapeI32x4, true, true),
)
case wasm.OpcodeVecI64x2ExtendHighI32x4S:
c.emit(
newOperationV128Extend(shapeI32x4, true, false),
)
case wasm.OpcodeVecI64x2ExtendLowI32x4U:
c.emit(
newOperationV128Extend(shapeI32x4, false, true),
)
case wasm.OpcodeVecI64x2ExtendHighI32x4U:
c.emit(
newOperationV128Extend(shapeI32x4, false, false),
)
case wasm.OpcodeVecI16x8Q15mulrSatS:
c.emit(
newOperationV128Q15mulrSatS(),
)
case wasm.OpcodeVecI16x8ExtMulLowI8x16S:
c.emit(
newOperationV128ExtMul(shapeI8x16, true, true),
)
case wasm.OpcodeVecI16x8ExtMulHighI8x16S:
c.emit(
newOperationV128ExtMul(shapeI8x16, true, false),
)
case wasm.OpcodeVecI16x8ExtMulLowI8x16U:
c.emit(
newOperationV128ExtMul(shapeI8x16, false, true),
)
case wasm.OpcodeVecI16x8ExtMulHighI8x16U:
c.emit(
newOperationV128ExtMul(shapeI8x16, false, false),
)
case wasm.OpcodeVecI32x4ExtMulLowI16x8S:
c.emit(
newOperationV128ExtMul(shapeI16x8, true, true),
)
case wasm.OpcodeVecI32x4ExtMulHighI16x8S:
c.emit(
newOperationV128ExtMul(shapeI16x8, true, false),
)
case wasm.OpcodeVecI32x4ExtMulLowI16x8U:
c.emit(
newOperationV128ExtMul(shapeI16x8, false, true),
)
case wasm.OpcodeVecI32x4ExtMulHighI16x8U:
c.emit(
newOperationV128ExtMul(shapeI16x8, false, false),
)
case wasm.OpcodeVecI64x2ExtMulLowI32x4S:
c.emit(
newOperationV128ExtMul(shapeI32x4, true, true),
)
case wasm.OpcodeVecI64x2ExtMulHighI32x4S:
c.emit(
newOperationV128ExtMul(shapeI32x4, true, false),
)
case wasm.OpcodeVecI64x2ExtMulLowI32x4U:
c.emit(
newOperationV128ExtMul(shapeI32x4, false, true),
)
case wasm.OpcodeVecI64x2ExtMulHighI32x4U:
c.emit(
newOperationV128ExtMul(shapeI32x4, false, false),
)
case wasm.OpcodeVecI16x8ExtaddPairwiseI8x16S:
c.emit(
newOperationV128ExtAddPairwise(shapeI8x16, true),
)
case wasm.OpcodeVecI16x8ExtaddPairwiseI8x16U:
c.emit(
newOperationV128ExtAddPairwise(shapeI8x16, false),
)
case wasm.OpcodeVecI32x4ExtaddPairwiseI16x8S:
c.emit(
newOperationV128ExtAddPairwise(shapeI16x8, true),
)
case wasm.OpcodeVecI32x4ExtaddPairwiseI16x8U:
c.emit(
newOperationV128ExtAddPairwise(shapeI16x8, false),
)
case wasm.OpcodeVecF64x2PromoteLowF32x4Zero:
c.emit(
newOperationV128FloatPromote(),
)
case wasm.OpcodeVecF32x4DemoteF64x2Zero:
c.emit(
newOperationV128FloatDemote(),
)
case wasm.OpcodeVecF32x4ConvertI32x4S:
c.emit(
newOperationV128FConvertFromI(shapeF32x4, true),
)
case wasm.OpcodeVecF32x4ConvertI32x4U:
c.emit(
newOperationV128FConvertFromI(shapeF32x4, false),
)
case wasm.OpcodeVecF64x2ConvertLowI32x4S:
c.emit(
newOperationV128FConvertFromI(shapeF64x2, true),
)
case wasm.OpcodeVecF64x2ConvertLowI32x4U:
c.emit(
newOperationV128FConvertFromI(shapeF64x2, false),
)
case wasm.OpcodeVecI32x4DotI16x8S:
c.emit(
newOperationV128Dot(),
)
case wasm.OpcodeVecI8x16NarrowI16x8S:
c.emit(
newOperationV128Narrow(shapeI16x8, true),
)
case wasm.OpcodeVecI8x16NarrowI16x8U:
c.emit(
newOperationV128Narrow(shapeI16x8, false),
)
case wasm.OpcodeVecI16x8NarrowI32x4S:
c.emit(
newOperationV128Narrow(shapeI32x4, true),
)
case wasm.OpcodeVecI16x8NarrowI32x4U:
c.emit(
newOperationV128Narrow(shapeI32x4, false),
)
case wasm.OpcodeVecI32x4TruncSatF32x4S:
c.emit(
newOperationV128ITruncSatFromF(shapeF32x4, true),
)
case wasm.OpcodeVecI32x4TruncSatF32x4U:
c.emit(
newOperationV128ITruncSatFromF(shapeF32x4, false),
)
case wasm.OpcodeVecI32x4TruncSatF64x2SZero:
c.emit(
newOperationV128ITruncSatFromF(shapeF64x2, true),
)
case wasm.OpcodeVecI32x4TruncSatF64x2UZero:
c.emit(
newOperationV128ITruncSatFromF(shapeF64x2, false),
)
default:
return fmt.Errorf("unsupported vector instruction in interpreterir: %s", wasm.VectorInstructionName(vecOp))
}
case wasm.OpcodeAtomicPrefix:
c.pc++
atomicOp := c.body[c.pc]
switch atomicOp {
case wasm.OpcodeAtomicMemoryWait32:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicMemoryWait32Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicMemoryWait(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicMemoryWait64:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicMemoryWait64Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicMemoryWait(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicMemoryNotify:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicMemoryNotifyName)
if err != nil {
return err
}
c.emit(
newOperationAtomicMemoryNotify(imm),
)
case wasm.OpcodeAtomicFence:
// Skip immediate value
c.pc++
_ = c.body[c.pc]
c.emit(
newOperationAtomicFence(),
)
case wasm.OpcodeAtomicI32Load:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32LoadName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64Load:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64LoadName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI32Load8U:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Load8UName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad8(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI32Load16U:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Load16UName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad16(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64Load8U:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Load8UName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad8(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Load16U:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Load16UName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad16(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Load32U:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Load32UName)
if err != nil {
return err
}
c.emit(
newOperationAtomicLoad(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI32Store:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32StoreName)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI32Store8:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Store8Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore8(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI32Store16:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Store16Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore16(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64Store:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64StoreName)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Store8:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Store8Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore8(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Store16:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Store16Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore16(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Store32:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Store32Name)
if err != nil {
return err
}
c.emit(
newOperationAtomicStore(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI32RmwAdd:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwAddName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI64RmwAdd:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwAddName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI32Rmw8AddU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8AddUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI64Rmw8AddU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8AddUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI32Rmw16AddU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16AddUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI64Rmw16AddU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16AddUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI64Rmw32AddU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32AddUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpAdd),
)
case wasm.OpcodeAtomicI32RmwSub:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwSubName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI64RmwSub:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwSubName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI32Rmw8SubU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8SubUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI64Rmw8SubU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8SubUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI32Rmw16SubU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16SubUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI64Rmw16SubU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16SubUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI64Rmw32SubU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32SubUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpSub),
)
case wasm.OpcodeAtomicI32RmwAnd:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwAndName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI64RmwAnd:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwAndName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI32Rmw8AndU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8AndUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI64Rmw8AndU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8AndUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI32Rmw16AndU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16AndUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI64Rmw16AndU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16AndUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI64Rmw32AndU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32AndUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpAnd),
)
case wasm.OpcodeAtomicI32RmwOr:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwOrName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI64RmwOr:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwOrName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI32Rmw8OrU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8OrUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI64Rmw8OrU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8OrUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI32Rmw16OrU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16OrUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI64Rmw16OrU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16OrUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI64Rmw32OrU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32OrUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpOr),
)
case wasm.OpcodeAtomicI32RmwXor:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwXorName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI64RmwXor:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwXorName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI32Rmw8XorU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8XorUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI64Rmw8XorU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8XorUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI32Rmw16XorU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16XorUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI64Rmw16XorU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16XorUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI64Rmw32XorU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32XorUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpXor),
)
case wasm.OpcodeAtomicI32RmwXchg:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwXchgName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI64RmwXchg:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwXchgName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI64, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI32Rmw8XchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8XchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI32, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI64Rmw8XchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8XchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8(unsignedTypeI64, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI32Rmw16XchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16XchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI32, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI64Rmw16XchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16XchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16(unsignedTypeI64, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI64Rmw32XchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32XchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW(unsignedTypeI32, imm, atomicArithmeticOpNop),
)
case wasm.OpcodeAtomicI32RmwCmpxchg:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32RmwCmpxchgName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMWCmpxchg(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64RmwCmpxchg:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64RmwCmpxchgName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMWCmpxchg(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI32Rmw8CmpxchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw8CmpxchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8Cmpxchg(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64Rmw8CmpxchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw8CmpxchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW8Cmpxchg(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI32Rmw16CmpxchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI32Rmw16CmpxchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16Cmpxchg(unsignedTypeI32, imm),
)
case wasm.OpcodeAtomicI64Rmw16CmpxchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw16CmpxchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMW16Cmpxchg(unsignedTypeI64, imm),
)
case wasm.OpcodeAtomicI64Rmw32CmpxchgU:
imm, err := c.readMemoryArg(wasm.OpcodeAtomicI64Rmw32CmpxchgUName)
if err != nil {
return err
}
c.emit(
newOperationAtomicRMWCmpxchg(unsignedTypeI32, imm),
)
default:
return fmt.Errorf("unsupported atomic instruction in interpreterir: %s", wasm.AtomicInstructionName(atomicOp))
}
default:
return fmt.Errorf("unsupported instruction in interpreterir: 0x%x", op)
}
// Move the program counter to point to the next instruction.
c.pc++
return nil
}
func (c *compiler) nextFrameID() (id uint32) {
id = c.currentFrameID + 1
c.currentFrameID++
return
}
func (c *compiler) applyToStack(opcode wasm.Opcode) (index uint32, err error) {
switch opcode {
case
// These are the opcodes that is coupled with "index" immediate
// and it DOES affect the signature of opcode.
wasm.OpcodeCall,
wasm.OpcodeCallIndirect,
wasm.OpcodeLocalGet,
wasm.OpcodeLocalSet,
wasm.OpcodeLocalTee,
wasm.OpcodeGlobalGet,
wasm.OpcodeGlobalSet:
// Assumes that we are at the opcode now so skip it before read immediates.
v, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return 0, fmt.Errorf("reading immediates: %w", err)
}
c.pc += num
index = v
default:
// Note that other opcodes are free of index
// as it doesn't affect the signature of opt code.
// In other words, the "index" argument of wasmOpcodeSignature
// is ignored there.
}
if c.unreachableState.on {
return 0, nil
}
// Retrieve the signature of the opcode.
s, err := c.wasmOpcodeSignature(opcode, index)
if err != nil {
return 0, err
}
// Manipulate the stack according to the signature.
// Note that the following algorithm assumes that
// the unknown type is unique in the signature,
// and is determined by the actual type on the stack.
// The determined type is stored in this typeParam.
var typeParam unsignedType
var typeParamFound bool
for i := range s.in {
want := s.in[len(s.in)-1-i]
actual := c.stackPop()
if want == unsignedTypeUnknown && typeParamFound {
want = typeParam
} else if want == unsignedTypeUnknown {
want = actual
typeParam = want
typeParamFound = true
}
if want != actual {
return 0, fmt.Errorf("input signature mismatch: want %s but have %s", want, actual)
}
}
for _, target := range s.out {
if target == unsignedTypeUnknown && !typeParamFound {
return 0, fmt.Errorf("cannot determine type of unknown result")
} else if target == unsignedTypeUnknown {
c.stackPush(typeParam)
} else {
c.stackPush(target)
}
}
return index, nil
}
func (c *compiler) stackPeek() (ret unsignedType) {
ret = c.stack[len(c.stack)-1]
return
}
func (c *compiler) stackSwitchAt(frame *controlFrame) {
c.stack = c.stack[:frame.originalStackLenWithoutParam]
c.stackLenInUint64 = frame.originalStackLenWithoutParamUint64
}
func (c *compiler) stackPop() (ret unsignedType) {
// No need to check stack bound
// as we can assume that all the operations
// are valid thanks to validateFunction
// at module validation phase.
ret = c.stack[len(c.stack)-1]
c.stack = c.stack[:len(c.stack)-1]
c.stackLenInUint64 -= 1 + int(unsignedTypeV128&ret>>2)
return
}
func (c *compiler) stackPush(ts unsignedType) {
c.stack = append(c.stack, ts)
c.stackLenInUint64 += 1 + int(unsignedTypeV128&ts>>2)
}
// emit adds the operations into the result.
func (c *compiler) emit(op unionOperation) {
if !c.unreachableState.on {
switch op.Kind {
case operationKindDrop:
// If the drop range is nil,
// we could remove such operations.
// That happens when drop operation is unnecessary.
// i.e. when there's no need to adjust stack before jmp.
if int64(op.U1) == -1 {
return
}
}
c.result.Operations = append(c.result.Operations, op)
if c.needSourceOffset {
c.result.IROperationSourceOffsetsInWasmBinary = append(c.result.IROperationSourceOffsetsInWasmBinary,
c.currentOpPC+c.bodyOffsetInCodeSection)
}
}
}
// Emit const expression with default values of the given type.
func (c *compiler) emitDefaultValue(t wasm.ValueType) {
switch t {
case wasm.ValueTypeI32:
c.stackPush(unsignedTypeI32)
c.emit(newOperationConstI32(0))
case wasm.ValueTypeI64, wasm.ValueTypeExternref, wasm.ValueTypeFuncref:
c.stackPush(unsignedTypeI64)
c.emit(newOperationConstI64(0))
case wasm.ValueTypeF32:
c.stackPush(unsignedTypeF32)
c.emit(newOperationConstF32(0))
case wasm.ValueTypeF64:
c.stackPush(unsignedTypeF64)
c.emit(newOperationConstF64(0))
case wasm.ValueTypeV128:
c.stackPush(unsignedTypeV128)
c.emit(newOperationV128Const(0, 0))
}
}
// Returns the "depth" (starting from top of the stack)
// of the n-th local.
func (c *compiler) localDepth(index wasm.Index) int {
height := c.localIndexToStackHeightInUint64[index]
return c.stackLenInUint64 - 1 - height
}
func (c *compiler) localType(index wasm.Index) (t wasm.ValueType) {
if params := uint32(len(c.sig.Params)); index < params {
t = c.sig.Params[index]
} else {
t = c.localTypes[index-params]
}
return
}
// getFrameDropRange returns the range (starting from top of the stack) that spans across the (uint64) stack. The range is
// supposed to be dropped from the stack when the given frame exists or branch into it.
//
// * frame is the control frame which the call-site is trying to branch into or exit.
// * isEnd true if the call-site is handling wasm.OpcodeEnd.
func (c *compiler) getFrameDropRange(frame *controlFrame, isEnd bool) inclusiveRange {
var start int
if !isEnd && frame.kind == controlFrameKindLoop {
// If this is not End and the call-site is trying to branch into the Loop control frame,
// we have to Start executing from the beginning of the loop block.
// Therefore, we have to pass the inputs to the frame.
start = frame.blockType.ParamNumInUint64
} else {
start = frame.blockType.ResultNumInUint64
}
end := c.stackLenInUint64 - 1 - frame.originalStackLenWithoutParamUint64
if start <= end {
return inclusiveRange{Start: int32(start), End: int32(end)}
} else {
return nopinclusiveRange
}
}
func (c *compiler) readMemoryArg(tag string) (memoryArg, error) {
c.result.UsesMemory = true
alignment, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return memoryArg{}, fmt.Errorf("reading alignment for %s: %w", tag, err)
}
c.pc += num
offset, num, err := leb128.LoadUint32(c.body[c.pc+1:])
if err != nil {
return memoryArg{}, fmt.Errorf("reading offset for %s: %w", tag, err)
}
c.pc += num
return memoryArg{Offset: offset, Alignment: alignment}, nil
}