mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-01 03:56:31 +00:00
168 lines
7.1 KiB
Go
168 lines
7.1 KiB
Go
|
// Copyright 2018 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"github.com/golang/geo/r2"
|
||
|
"github.com/golang/geo/s1"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
// MinTessellationTolerance is the minimum supported tolerance (which
|
||
|
// corresponds to a distance less than 1 micrometer on the Earth's
|
||
|
// surface, but is still much larger than the expected projection and
|
||
|
// interpolation errors).
|
||
|
MinTessellationTolerance s1.Angle = 1e-13
|
||
|
)
|
||
|
|
||
|
// EdgeTessellator converts an edge in a given projection (e.g., Mercator) into
|
||
|
// a chain of spherical geodesic edges such that the maximum distance between
|
||
|
// the original edge and the geodesic edge chain is at most the requested
|
||
|
// tolerance. Similarly, it can convert a spherical geodesic edge into a chain
|
||
|
// of edges in a given 2D projection such that the maximum distance between the
|
||
|
// geodesic edge and the chain of projected edges is at most the requested tolerance.
|
||
|
//
|
||
|
// Method | Input | Output
|
||
|
// ------------|------------------------|-----------------------
|
||
|
// Projected | S2 geodesics | Planar projected edges
|
||
|
// Unprojected | Planar projected edges | S2 geodesics
|
||
|
type EdgeTessellator struct {
|
||
|
projection Projection
|
||
|
tolerance s1.ChordAngle
|
||
|
wrapDistance r2.Point
|
||
|
}
|
||
|
|
||
|
// NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance.
|
||
|
func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator {
|
||
|
return &EdgeTessellator{
|
||
|
projection: p,
|
||
|
tolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, MinTessellationTolerance)),
|
||
|
wrapDistance: p.WrapDistance(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// AppendProjected converts the spherical geodesic edge AB to a chain of planar edges
|
||
|
// in the given projection and returns the corresponding vertices.
|
||
|
//
|
||
|
// If the given projection has one or more coordinate axes that wrap, then
|
||
|
// every vertex's coordinates will be as close as possible to the previous
|
||
|
// vertex's coordinates. Note that this may yield vertices whose
|
||
|
// coordinates are outside the usual range. For example, tessellating the
|
||
|
// edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190).
|
||
|
func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point {
|
||
|
pa := e.projection.Project(a)
|
||
|
if len(vertices) == 0 {
|
||
|
vertices = []r2.Point{pa}
|
||
|
} else {
|
||
|
pa = e.wrapDestination(vertices[len(vertices)-1], pa)
|
||
|
}
|
||
|
|
||
|
pb := e.wrapDestination(pa, e.projection.Project(b))
|
||
|
return e.appendProjected(pa, a, pb, b, vertices)
|
||
|
}
|
||
|
|
||
|
// appendProjected splits a geodesic edge AB as necessary and returns the
|
||
|
// projected vertices appended to the given vertices.
|
||
|
//
|
||
|
// The maximum recursion depth is (math.Pi / MinTessellationTolerance) < 45
|
||
|
func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []r2.Point) []r2.Point {
|
||
|
// It's impossible to robustly test whether a projected edge is close enough
|
||
|
// to a geodesic edge without knowing the details of the projection
|
||
|
// function, but the following heuristic works well for a wide range of map
|
||
|
// projections. The idea is simply to test whether the midpoint of the
|
||
|
// projected edge is close enough to the midpoint of the geodesic edge.
|
||
|
//
|
||
|
// This measures the distance between the two edges by treating them as
|
||
|
// parametric curves rather than geometric ones. The problem with
|
||
|
// measuring, say, the minimum distance from the projected midpoint to the
|
||
|
// geodesic edge is that this is a lower bound on the value we want, because
|
||
|
// the maximum separation between the two curves is generally not attained
|
||
|
// at the midpoint of the projected edge. The distance between the curve
|
||
|
// midpoints is at least an upper bound on the distance from either midpoint
|
||
|
// to opposite curve. It's not necessarily an upper bound on the maximum
|
||
|
// distance between the two curves, but it is a powerful requirement because
|
||
|
// it demands that the two curves stay parametrically close together. This
|
||
|
// turns out to be much more robust with respect for projections with
|
||
|
// singularities (e.g., the North and South poles in the rectangular and
|
||
|
// Mercator projections) because the curve parameterization speed changes
|
||
|
// rapidly near such singularities.
|
||
|
mid := Point{a.Add(b.Vector).Normalize()}
|
||
|
testMid := e.projection.Unproject(e.projection.Interpolate(0.5, pa, pb))
|
||
|
|
||
|
if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
|
||
|
return append(vertices, pb)
|
||
|
}
|
||
|
|
||
|
pmid := e.wrapDestination(pa, e.projection.Project(mid))
|
||
|
vertices = e.appendProjected(pa, a, pmid, mid, vertices)
|
||
|
return e.appendProjected(pmid, mid, pb, b, vertices)
|
||
|
}
|
||
|
|
||
|
// AppendUnprojected converts the planar edge AB in the given projection to a chain of
|
||
|
// spherical geodesic edges and returns the vertices.
|
||
|
//
|
||
|
// Note that to construct a Loop, you must eliminate the duplicate first and last
|
||
|
// vertex. Note also that if the given projection involves coordinate wrapping
|
||
|
// (e.g. across the 180 degree meridian) then the first and last vertices may not
|
||
|
// be exactly the same.
|
||
|
func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point {
|
||
|
pb2 := e.wrapDestination(pa, pb)
|
||
|
a := e.projection.Unproject(pa)
|
||
|
b := e.projection.Unproject(pb)
|
||
|
|
||
|
if len(vertices) == 0 {
|
||
|
vertices = []Point{a}
|
||
|
}
|
||
|
|
||
|
// Note that coordinate wrapping can create a small amount of error. For
|
||
|
// example in the edge chain "0:-175, 0:179, 0:-177", the first edge is
|
||
|
// transformed into "0:-175, 0:-181" while the second is transformed into
|
||
|
// "0:179, 0:183". The two coordinate pairs for the middle vertex
|
||
|
// ("0:-181" and "0:179") may not yield exactly the same S2Point.
|
||
|
return e.appendUnprojected(pa, a, pb2, b, vertices)
|
||
|
}
|
||
|
|
||
|
// appendUnprojected interpolates a projected edge and appends the corresponding
|
||
|
// points on the sphere.
|
||
|
func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []Point) []Point {
|
||
|
pmid := e.projection.Interpolate(0.5, pa, pb)
|
||
|
mid := e.projection.Unproject(pmid)
|
||
|
testMid := Point{a.Add(b.Vector).Normalize()}
|
||
|
|
||
|
if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
|
||
|
return append(vertices, b)
|
||
|
}
|
||
|
|
||
|
vertices = e.appendUnprojected(pa, a, pmid, mid, vertices)
|
||
|
return e.appendUnprojected(pmid, mid, pb, b, vertices)
|
||
|
}
|
||
|
|
||
|
// wrapDestination returns the coordinates of the edge destination wrapped if
|
||
|
// necessary to obtain the shortest edge.
|
||
|
func (e *EdgeTessellator) wrapDestination(pa, pb r2.Point) r2.Point {
|
||
|
x := pb.X
|
||
|
y := pb.Y
|
||
|
// The code below ensures that pb is unmodified unless wrapping is required.
|
||
|
if e.wrapDistance.X > 0 && math.Abs(x-pa.X) > 0.5*e.wrapDistance.X {
|
||
|
x = pa.X + math.Remainder(x-pa.X, e.wrapDistance.X)
|
||
|
}
|
||
|
if e.wrapDistance.Y > 0 && math.Abs(y-pa.Y) > 0.5*e.wrapDistance.Y {
|
||
|
y = pa.Y + math.Remainder(y-pa.Y, e.wrapDistance.Y)
|
||
|
}
|
||
|
return r2.Point{x, y}
|
||
|
}
|