// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "io" "math" ) // Polygon represents a sequence of zero or more loops; recall that the // interior of a loop is defined to be its left-hand side (see Loop). // // When the polygon is initialized, the given loops are automatically converted // into a canonical form consisting of "shells" and "holes". Shells and holes // are both oriented CCW, and are nested hierarchically. The loops are // reordered to correspond to a pre-order traversal of the nesting hierarchy. // // Polygons may represent any region of the sphere with a polygonal boundary, // including the entire sphere (known as the "full" polygon). The full polygon // consists of a single full loop (see Loop), whereas the empty polygon has no // loops at all. // // Use FullPolygon() to construct a full polygon. The zero value of Polygon is // treated as the empty polygon. // // Polygons have the following restrictions: // // - Loops may not cross, i.e. the boundary of a loop may not intersect // both the interior and exterior of any other loop. // // - Loops may not share edges, i.e. if a loop contains an edge AB, then // no other loop may contain AB or BA. // // - Loops may share vertices, however no vertex may appear twice in a // single loop (see Loop). // // - No loop may be empty. The full loop may appear only in the full polygon. type Polygon struct { loops []*Loop // index is a spatial index of all the polygon loops. index *ShapeIndex // hasHoles tracks if this polygon has at least one hole. hasHoles bool // numVertices keeps the running total of all of the vertices of the contained loops. numVertices int // numEdges tracks the total number of edges in all the loops in this polygon. numEdges int // bound is a conservative bound on all points contained by this loop. // If l.ContainsPoint(P), then l.bound.ContainsPoint(P). bound Rect // Since bound is not exact, it is possible that a loop A contains // another loop B whose bounds are slightly larger. subregionBound // has been expanded sufficiently to account for this error, i.e. // if A.Contains(B), then A.subregionBound.Contains(B.bound). subregionBound Rect // A slice where element i is the cumulative number of edges in the // preceding loops in the polygon. This field is used for polygons that // have a large number of loops, and may be empty for polygons with few loops. cumulativeEdges []int } // PolygonFromLoops constructs a polygon from the given set of loops. The polygon // interior consists of the points contained by an odd number of loops. (Recall // that a loop contains the set of points on its left-hand side.) // // This method determines the loop nesting hierarchy and assigns every loop a // depth. Shells have even depths, and holes have odd depths. // // Note: The given set of loops are reordered by this method so that the hierarchy // can be traversed using Parent, LastDescendant and the loops depths. func PolygonFromLoops(loops []*Loop) *Polygon { p := &Polygon{} // Empty polygons do not contain any loops, even the Empty loop. if len(loops) == 1 && loops[0].IsEmpty() { p.initLoopProperties() return p } p.loops = loops p.initNested() return p } // PolygonFromOrientedLoops returns a Polygon from the given set of loops, // like PolygonFromLoops. It expects loops to be oriented such that the polygon // interior is on the left-hand side of all loops. This implies that shells // and holes should have opposite orientations in the input to this method. // (During initialization, loops representing holes will automatically be // inverted.) func PolygonFromOrientedLoops(loops []*Loop) *Polygon { // Here is the algorithm: // // 1. Remember which of the given loops contain OriginPoint. // // 2. Invert loops as necessary to ensure that they are nestable (i.e., no // loop contains the complement of any other loop). This may result in a // set of loops corresponding to the complement of the given polygon, but // we will fix that problem later. // // We make the loops nestable by first normalizing all the loops (i.e., // inverting any loops whose turning angle is negative). This handles // all loops except those whose turning angle is very close to zero // (within the maximum error tolerance). Any such loops are inverted if // and only if they contain OriginPoint(). (In theory this step is only // necessary if there are at least two such loops.) The resulting set of // loops is guaranteed to be nestable. // // 3. Build the polygon. This yields either the desired polygon or its // complement. // // 4. If there is at least one loop, we find a loop L that is adjacent to // OriginPoint() (where "adjacent" means that there exists a path // connecting OriginPoint() to some vertex of L such that the path does // not cross any loop). There may be a single such adjacent loop, or // there may be several (in which case they should all have the same // contains_origin() value). We choose L to be the loop containing the // origin whose depth is greatest, or loop(0) (a top-level shell) if no // such loop exists. // // 5. If (L originally contained origin) != (polygon contains origin), we // invert the polygon. This is done by inverting a top-level shell whose // turning angle is minimal and then fixing the nesting hierarchy. Note // that because we normalized all the loops initially, this step is only // necessary if the polygon requires at least one non-normalized loop to // represent it. containedOrigin := make(map[*Loop]bool) for _, l := range loops { containedOrigin[l] = l.ContainsOrigin() } for _, l := range loops { angle := l.TurningAngle() if math.Abs(angle) > l.turningAngleMaxError() { // Normalize the loop. if angle < 0 { l.Invert() } } else { // Ensure that the loop does not contain the origin. if l.ContainsOrigin() { l.Invert() } } } p := PolygonFromLoops(loops) if p.NumLoops() > 0 { originLoop := p.Loop(0) polygonContainsOrigin := false for _, l := range p.Loops() { if l.ContainsOrigin() { polygonContainsOrigin = !polygonContainsOrigin originLoop = l } } if containedOrigin[originLoop] != polygonContainsOrigin { p.Invert() } } return p } // Invert inverts the polygon (replaces it by its complement). func (p *Polygon) Invert() { // Inverting any one loop will invert the polygon. The best loop to invert // is the one whose area is largest, since this yields the smallest area // after inversion. The loop with the largest area is always at depth 0. // The descendents of this loop all have their depth reduced by 1, while the // former siblings of this loop all have their depth increased by 1. // The empty and full polygons are handled specially. if p.IsEmpty() { *p = *FullPolygon() return } if p.IsFull() { *p = Polygon{} return } // Find the loop whose area is largest (i.e., whose turning angle is // smallest), minimizing calls to TurningAngle(). In particular, for // polygons with a single shell at level 0 there is no need to call // TurningAngle() at all. (This method is relatively expensive.) best := 0 const none = 10.0 // Flag that means "not computed yet" bestAngle := none for i := 1; i < p.NumLoops(); i++ { if p.Loop(i).depth != 0 { continue } // We defer computing the turning angle of loop 0 until we discover // that the polygon has another top-level shell. if bestAngle == none { bestAngle = p.Loop(best).TurningAngle() } angle := p.Loop(i).TurningAngle() // We break ties deterministically in order to avoid having the output // depend on the input order of the loops. if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) { best = i bestAngle = angle } } // Build the new loops vector, starting with the inverted loop. p.Loop(best).Invert() newLoops := make([]*Loop, 0, p.NumLoops()) // Add the former siblings of this loop as descendants. lastBest := p.LastDescendant(best) newLoops = append(newLoops, p.Loop(best)) for i, l := range p.Loops() { if i < best || i > lastBest { l.depth++ newLoops = append(newLoops, l) } } // Add the former children of this loop as siblings. for i, l := range p.Loops() { if i > best && i <= lastBest { l.depth-- newLoops = append(newLoops, l) } } p.loops = newLoops p.initLoopProperties() } // Defines a total ordering on Loops that does not depend on the cyclic // order of loop vertices. This function is used to choose which loop to // invert in the case where several loops have exactly the same area. func compareLoops(a, b *Loop) int { if na, nb := a.NumVertices(), b.NumVertices(); na != nb { return na - nb } ai, aDir := a.CanonicalFirstVertex() bi, bDir := b.CanonicalFirstVertex() if aDir != bDir { return aDir - bDir } for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir { if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 { return cmp } } return 0 } // PolygonFromCell returns a Polygon from a single loop created from the given Cell. func PolygonFromCell(cell Cell) *Polygon { return PolygonFromLoops([]*Loop{LoopFromCell(cell)}) } // initNested takes the set of loops in this polygon and performs the nesting // computations to set the proper nesting and parent/child relationships. func (p *Polygon) initNested() { if len(p.loops) == 1 { p.initOneLoop() return } lm := make(loopMap) for _, l := range p.loops { lm.insertLoop(l, nil) } // The loops have all been added to the loopMap for ordering. Clear the // loops slice because we add all the loops in-order in initLoops. p.loops = nil // Reorder the loops in depth-first traversal order. p.initLoops(lm) p.initLoopProperties() } // loopMap is a map of a loop to its immediate children with respect to nesting. // It is used to determine which loops are shells and which are holes. type loopMap map[*Loop][]*Loop // insertLoop adds the given loop to the loop map under the specified parent. // All children of the new entry are checked to see if the need to move up to // a different level. func (lm loopMap) insertLoop(newLoop, parent *Loop) { var children []*Loop for done := false; !done; { children = lm[parent] done = true for _, child := range children { if child.ContainsNested(newLoop) { parent = child done = false break } } } // Now, we have found a parent for this loop, it may be that some of the // children of the parent of this loop may now be children of the new loop. newChildren := lm[newLoop] for i := 0; i < len(children); { child := children[i] if newLoop.ContainsNested(child) { newChildren = append(newChildren, child) children = append(children[0:i], children[i+1:]...) } else { i++ } } lm[newLoop] = newChildren lm[parent] = append(children, newLoop) } // loopStack simplifies access to the loops while being initialized. type loopStack []*Loop func (s *loopStack) push(v *Loop) { *s = append(*s, v) } func (s *loopStack) pop() *Loop { l := len(*s) r := (*s)[l-1] *s = (*s)[:l-1] return r } // initLoops walks the mapping of loops to all of their children, and adds them in // order into to the polygons set of loops. func (p *Polygon) initLoops(lm loopMap) { var stack loopStack stack.push(nil) depth := -1 for len(stack) > 0 { loop := stack.pop() if loop != nil { depth = loop.depth p.loops = append(p.loops, loop) } children := lm[loop] for i := len(children) - 1; i >= 0; i-- { child := children[i] child.depth = depth + 1 stack.push(child) } } } // initOneLoop set the properties for a polygon made of a single loop. // TODO(roberts): Can this be merged with initLoopProperties func (p *Polygon) initOneLoop() { p.hasHoles = false p.numVertices = len(p.loops[0].vertices) p.bound = p.loops[0].RectBound() p.subregionBound = ExpandForSubregions(p.bound) // Ensure the loops depth is set correctly. p.loops[0].depth = 0 p.initEdgesAndIndex() } // initLoopProperties sets the properties for polygons with multiple loops. func (p *Polygon) initLoopProperties() { // the loops depths are set by initNested/initOriented prior to this. p.bound = EmptyRect() p.hasHoles = false for _, l := range p.loops { if l.IsHole() { p.hasHoles = true } else { p.bound = p.bound.Union(l.RectBound()) } p.numVertices += l.NumVertices() } p.subregionBound = ExpandForSubregions(p.bound) p.initEdgesAndIndex() } // initEdgesAndIndex performs the shape related initializations and adds the final // polygon to the index. func (p *Polygon) initEdgesAndIndex() { if p.IsFull() { return } const maxLinearSearchLoops = 12 // Based on benchmarks. if len(p.loops) > maxLinearSearchLoops { p.cumulativeEdges = make([]int, 0, len(p.loops)) } for _, l := range p.loops { if p.cumulativeEdges != nil { p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges) } p.numEdges += len(l.vertices) } p.index = NewShapeIndex() p.index.Add(p) } // FullPolygon returns a special "full" polygon. func FullPolygon() *Polygon { ret := &Polygon{ loops: []*Loop{ FullLoop(), }, numVertices: len(FullLoop().Vertices()), bound: FullRect(), subregionBound: FullRect(), } ret.initEdgesAndIndex() return ret } // Validate checks whether this is a valid polygon, // including checking whether all the loops are themselves valid. func (p *Polygon) Validate() error { for i, l := range p.loops { // Check for loop errors that don't require building a ShapeIndex. if err := l.findValidationErrorNoIndex(); err != nil { return fmt.Errorf("loop %d: %v", i, err) } // Check that no loop is empty, and that the full loop only appears in the // full polygon. if l.IsEmpty() { return fmt.Errorf("loop %d: empty loops are not allowed", i) } if l.IsFull() && len(p.loops) > 1 { return fmt.Errorf("loop %d: full loop appears in non-full polygon", i) } } // TODO(roberts): Uncomment the remaining checks when they are completed. // Check for loop self-intersections and loop pairs that cross // (including duplicate edges and vertices). // if findSelfIntersection(p.index) { // return fmt.Errorf("polygon has loop pairs that cross") // } // Check whether initOriented detected inconsistent loop orientations. // if p.hasInconsistentLoopOrientations { // return fmt.Errorf("inconsistent loop orientations detected") // } // Finally, verify the loop nesting hierarchy. return p.findLoopNestingError() } // findLoopNestingError reports if there is an error in the loop nesting hierarchy. func (p *Polygon) findLoopNestingError() error { // First check that the loop depths make sense. lastDepth := -1 for i, l := range p.loops { depth := l.depth if depth < 0 || depth > lastDepth+1 { return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth) } lastDepth = depth } // Then check that they correspond to the actual loop nesting. This test // is quadratic in the number of loops but the cost per iteration is small. for i, l := range p.loops { last := p.LastDescendant(i) for j, l2 := range p.loops { if i == j { continue } nested := (j >= i+1) && (j <= last) const reverseB = false if l.containsNonCrossingBoundary(l2, reverseB) != nested { nestedStr := "" if !nested { nestedStr = "not " } return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j) } } } return nil } // IsEmpty reports whether this is the special "empty" polygon (consisting of no loops). func (p *Polygon) IsEmpty() bool { return len(p.loops) == 0 } // IsFull reports whether this is the special "full" polygon (consisting of a // single loop that encompasses the entire sphere). func (p *Polygon) IsFull() bool { return len(p.loops) == 1 && p.loops[0].IsFull() } // NumLoops returns the number of loops in this polygon. func (p *Polygon) NumLoops() int { return len(p.loops) } // Loops returns the loops in this polygon. func (p *Polygon) Loops() []*Loop { return p.loops } // Loop returns the loop at the given index. Note that during initialization, // the given loops are reordered according to a pre-order traversal of the loop // nesting hierarchy. This implies that every loop is immediately followed by // its descendants. This hierarchy can be traversed using the methods Parent, // LastDescendant, and Loop.depth. func (p *Polygon) Loop(k int) *Loop { return p.loops[k] } // Parent returns the index of the parent of loop k. // If the loop does not have a parent, ok=false is returned. func (p *Polygon) Parent(k int) (index int, ok bool) { // See where we are on the depth hierarchy. depth := p.loops[k].depth if depth == 0 { return -1, false } // There may be several loops at the same nesting level as us that share a // parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop. // we don't know how many may be next to us before we get back to our parent loop.) // Move up one position from us, and then begin traversing back through the set of loops // until we find the one that is our parent or we get to the top of the polygon. for k--; k >= 0 && p.loops[k].depth <= depth; k-- { } return k, true } // LastDescendant returns the index of the last loop that is contained within loop k. // If k is negative, it returns the last loop in the polygon. // Note that loops are indexed according to a pre-order traversal of the nesting // hierarchy, so the immediate children of loop k can be found by iterating over // the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal // to Loop(k).depth+1. func (p *Polygon) LastDescendant(k int) int { if k < 0 { return len(p.loops) - 1 } depth := p.loops[k].depth // Find the next loop immediately past us in the set of loops, and then start // moving down the list until we either get to the end or find the next loop // that is higher up the hierarchy than we are. for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ { } return k - 1 } // CapBound returns a bounding spherical cap. func (p *Polygon) CapBound() Cap { return p.bound.CapBound() } // RectBound returns a bounding latitude-longitude rectangle. func (p *Polygon) RectBound() Rect { return p.bound } // ContainsPoint reports whether the polygon contains the point. func (p *Polygon) ContainsPoint(point Point) bool { // NOTE: A bounds check slows down this function by about 50%. It is // worthwhile only when it might allow us to delay building the index. if !p.index.IsFresh() && !p.bound.ContainsPoint(point) { return false } // For small polygons, and during initial construction, it is faster to just // check all the crossing. const maxBruteForceVertices = 32 if p.numVertices < maxBruteForceVertices || p.index == nil { inside := false for _, l := range p.loops { // use loops bruteforce to avoid building the index on each loop. inside = inside != l.bruteForceContainsPoint(point) } return inside } // Otherwise, look up the ShapeIndex cell containing this point. it := p.index.Iterator() if !it.LocatePoint(point) { return false } return p.iteratorContainsPoint(it, point) } // ContainsCell reports whether the polygon contains the given cell. func (p *Polygon) ContainsCell(cell Cell) bool { it := p.index.Iterator() relation := it.LocateCellID(cell.ID()) // If "cell" is disjoint from all index cells, it is not contained. // Similarly, if "cell" is subdivided into one or more index cells then it // is not contained, since index cells are subdivided only if they (nearly) // intersect a sufficient number of edges. (But note that if "cell" itself // is an index cell then it may be contained, since it could be a cell with // no edges in the loop interior.) if relation != Indexed { return false } // Otherwise check if any edges intersect "cell". if p.boundaryApproxIntersects(it, cell) { return false } // Otherwise check if the loop contains the center of "cell". return p.iteratorContainsPoint(it, cell.Center()) } // IntersectsCell reports whether the polygon intersects the given cell. func (p *Polygon) IntersectsCell(cell Cell) bool { it := p.index.Iterator() relation := it.LocateCellID(cell.ID()) // If cell does not overlap any index cell, there is no intersection. if relation == Disjoint { return false } // If cell is subdivided into one or more index cells, there is an // intersection to within the S2ShapeIndex error bound (see Contains). if relation == Subdivided { return true } // If cell is an index cell, there is an intersection because index cells // are created only if they have at least one edge or they are entirely // contained by the loop. if it.CellID() == cell.id { return true } // Otherwise check if any edges intersect cell. if p.boundaryApproxIntersects(it, cell) { return true } // Otherwise check if the loop contains the center of cell. return p.iteratorContainsPoint(it, cell.Center()) } // CellUnionBound computes a covering of the Polygon. func (p *Polygon) CellUnionBound() []CellID { // TODO(roberts): Use ShapeIndexRegion when it's available. return p.CapBound().CellUnionBound() } // boundaryApproxIntersects reports whether the loop's boundary intersects cell. // It may also return true when the loop boundary does not intersect cell but // some edge comes within the worst-case error tolerance. // // This requires that it.Locate(cell) returned Indexed. func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool { aClipped := it.IndexCell().findByShapeID(0) // If there are no edges, there is no intersection. if len(aClipped.edges) == 0 { return false } // We can save some work if cell is the index cell itself. if it.CellID() == cell.ID() { return true } // Otherwise check whether any of the edges intersect cell. maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist) bound := cell.BoundUV().ExpandedByMargin(maxError) for _, e := range aClipped.edges { edge := p.index.Shape(0).Edge(e) v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError) if ok && edgeIntersectsRect(v0, v1, bound) { return true } } return false } // iteratorContainsPoint reports whether the iterator that is positioned at the // ShapeIndexCell that may contain p, contains the point p. func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool { // Test containment by drawing a line segment from the cell center to the // given point and counting edge crossings. aClipped := it.IndexCell().findByShapeID(0) inside := aClipped.containsCenter if len(aClipped.edges) == 0 { return inside } // This block requires ShapeIndex. crosser := NewEdgeCrosser(it.Center(), point) shape := p.index.Shape(0) for _, e := range aClipped.edges { edge := shape.Edge(e) inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) } return inside } // Shape Interface // NumEdges returns the number of edges in this shape. func (p *Polygon) NumEdges() int { return p.numEdges } // Edge returns endpoints for the given edge index. func (p *Polygon) Edge(e int) Edge { var i int if len(p.cumulativeEdges) > 0 { for i = range p.cumulativeEdges { if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] { e -= p.cumulativeEdges[i] break } } } else { // When the number of loops is small, use linear search. Most often // there is exactly one loop and the code below executes zero times. for i = 0; e >= len(p.Loop(i).vertices); i++ { e -= len(p.Loop(i).vertices) } } return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)} } // ReferencePoint returns the reference point for this polygon. func (p *Polygon) ReferencePoint() ReferencePoint { containsOrigin := false for _, l := range p.loops { containsOrigin = containsOrigin != l.ContainsOrigin() } return OriginReferencePoint(containsOrigin) } // NumChains reports the number of contiguous edge chains in the Polygon. func (p *Polygon) NumChains() int { return p.NumLoops() } // Chain returns the i-th edge Chain (loop) in the Shape. func (p *Polygon) Chain(chainID int) Chain { if p.cumulativeEdges != nil { return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)} } e := 0 for j := 0; j < chainID; j++ { e += len(p.Loop(j).vertices) } // Polygon represents a full loop as a loop with one vertex, while // Shape represents a full loop as a chain with no vertices. if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 { return Chain{e, numVertices} } return Chain{e, 0} } // ChainEdge returns the j-th edge of the i-th edge Chain (loop). func (p *Polygon) ChainEdge(i, j int) Edge { return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)} } // ChainPosition returns a pair (i, j) such that edgeID is the j-th edge // of the i-th edge Chain. func (p *Polygon) ChainPosition(edgeID int) ChainPosition { var i int if len(p.cumulativeEdges) > 0 { for i = range p.cumulativeEdges { if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] { edgeID -= p.cumulativeEdges[i] break } } } else { // When the number of loops is small, use linear search. Most often // there is exactly one loop and the code below executes zero times. for i = 0; edgeID >= len(p.Loop(i).vertices); i++ { edgeID -= len(p.Loop(i).vertices) } } // TODO(roberts): unify this and Edge since they are mostly identical. return ChainPosition{i, edgeID} } // Dimension returns the dimension of the geometry represented by this Polygon. func (p *Polygon) Dimension() int { return 2 } func (p *Polygon) typeTag() typeTag { return typeTagPolygon } func (p *Polygon) privateInterface() {} // Contains reports whether this polygon contains the other polygon. // Specifically, it reports whether all the points in the other polygon // are also in this polygon. func (p *Polygon) Contains(o *Polygon) bool { // If both polygons have one loop, use the more efficient Loop method. // Note that Loop's Contains does its own bounding rectangle check. if len(p.loops) == 1 && len(o.loops) == 1 { return p.loops[0].Contains(o.loops[0]) } // Otherwise if neither polygon has holes, we can still use the more // efficient Loop's Contains method (rather than compareBoundary), // but it's worthwhile to do our own bounds check first. if !p.subregionBound.Contains(o.bound) { // Even though Bound(A) does not contain Bound(B), it is still possible // that A contains B. This can only happen when union of the two bounds // spans all longitudes. For example, suppose that B consists of two // shells with a longitude gap between them, while A consists of one shell // that surrounds both shells of B but goes the other way around the // sphere (so that it does not intersect the longitude gap). if !p.bound.Lng.Union(o.bound.Lng).IsFull() { return false } } if !p.hasHoles && !o.hasHoles { for _, l := range o.loops { if !p.anyLoopContains(l) { return false } } return true } // Polygon A contains B iff B does not intersect the complement of A. From // the intersection algorithm below, this means that the complement of A // must exclude the entire boundary of B, and B must exclude all shell // boundaries of the complement of A. (It can be shown that B must then // exclude the entire boundary of the complement of A.) The first call // below returns false if the boundaries cross, therefore the second call // does not need to check for any crossing edges (which makes it cheaper). return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p) } // Intersects reports whether this polygon intersects the other polygon, i.e. // if there is a point that is contained by both polygons. func (p *Polygon) Intersects(o *Polygon) bool { // If both polygons have one loop, use the more efficient Loop method. // Note that Loop Intersects does its own bounding rectangle check. if len(p.loops) == 1 && len(o.loops) == 1 { return p.loops[0].Intersects(o.loops[0]) } // Otherwise if neither polygon has holes, we can still use the more // efficient Loop.Intersects method. The polygons intersect if and // only if some pair of loop regions intersect. if !p.bound.Intersects(o.bound) { return false } if !p.hasHoles && !o.hasHoles { for _, l := range o.loops { if p.anyLoopIntersects(l) { return true } } return false } // Polygon A is disjoint from B if A excludes the entire boundary of B and B // excludes all shell boundaries of A. (It can be shown that B must then // exclude the entire boundary of A.) The first call below returns false if // the boundaries cross, therefore the second call does not need to check // for crossing edges. return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p) } // compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A // excludes the boundary of B, and 0 if the boundaries of A and B cross. func (p *Polygon) compareBoundary(o *Loop) int { result := -1 for i := 0; i < len(p.loops) && result != 0; i++ { // If B crosses any loop of A, the result is 0. Otherwise the result // changes sign each time B is contained by a loop of A. result *= -p.loops[i].compareBoundary(o) } return result } // containsBoundary reports whether this polygon contains the entire boundary of B. func (p *Polygon) containsBoundary(o *Polygon) bool { for _, l := range o.loops { if p.compareBoundary(l) <= 0 { return false } } return true } // excludesBoundary reports whether this polygon excludes the entire boundary of B. func (p *Polygon) excludesBoundary(o *Polygon) bool { for _, l := range o.loops { if p.compareBoundary(l) >= 0 { return false } } return true } // containsNonCrossingBoundary reports whether polygon A contains the boundary of // loop B. Shared edges are handled according to the rule described in loops // containsNonCrossingBoundary. func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool { var inside bool for _, l := range p.loops { x := l.containsNonCrossingBoundary(o, reverse) inside = (inside != x) } return inside } // excludesNonCrossingShells reports wheterh given two polygons A and B such that the // boundary of A does not cross any loop of B, if A excludes all shell boundaries of B. func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool { for _, l := range o.loops { if l.IsHole() { continue } if p.containsNonCrossingBoundary(l, false) { return false } } return true } // excludesNonCrossingComplementShells reports whether given two polygons A and B // such that the boundary of A does not cross any loop of B, if A excludes all // shell boundaries of the complement of B. func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool { // Special case to handle the complement of the empty or full polygons. if o.IsEmpty() { return !p.IsFull() } if o.IsFull() { return true } // Otherwise the complement of B may be obtained by inverting loop(0) and // then swapping the shell/hole status of all other loops. This implies // that the shells of the complement consist of loop 0 plus all the holes of // the original polygon. for j, l := range o.loops { if j > 0 && !l.IsHole() { continue } // The interior of the complement is to the right of loop 0, and to the // left of the loops that were originally holes. if p.containsNonCrossingBoundary(l, j == 0) { return false } } return true } // anyLoopContains reports whether any loop in this polygon contains the given loop. func (p *Polygon) anyLoopContains(o *Loop) bool { for _, l := range p.loops { if l.Contains(o) { return true } } return false } // anyLoopIntersects reports whether any loop in this polygon intersects the given loop. func (p *Polygon) anyLoopIntersects(o *Loop) bool { for _, l := range p.loops { if l.Intersects(o) { return true } } return false } // Area returns the area of the polygon interior, i.e. the region on the left side // of an odd number of loops. The return value is between 0 and 4*Pi. func (p *Polygon) Area() float64 { var area float64 for _, loop := range p.loops { area += float64(loop.Sign()) * loop.Area() } return area } // Encode encodes the Polygon func (p *Polygon) Encode(w io.Writer) error { e := &encoder{w: w} p.encode(e) return e.err } // encode only supports lossless encoding and not compressed format. func (p *Polygon) encode(e *encoder) { if p.numVertices == 0 { p.encodeCompressed(e, maxLevel, nil) return } // Convert all the polygon vertices to XYZFaceSiTi format. vs := make([]xyzFaceSiTi, 0, p.numVertices) for _, l := range p.loops { vs = append(vs, l.xyzFaceSiTiVertices()...) } // Computes a histogram of the cell levels at which the vertices are snapped. // (histogram[0] is the number of unsnapped vertices, histogram[i] the number // of vertices snapped at level i-1). histogram := make([]int, maxLevel+2) for _, v := range vs { histogram[v.level+1]++ } // Compute the level at which most of the vertices are snapped. // If multiple levels have the same maximum number of vertices // snapped to it, the first one (lowest level number / largest // area / smallest encoding length) will be chosen, so this // is desired. var snapLevel, numSnapped int for level, h := range histogram[1:] { if h > numSnapped { snapLevel, numSnapped = level, h } } // Choose an encoding format based on the number of unsnapped vertices and a // rough estimate of the encoded sizes. numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel. const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes. compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped losslessSize := pointSize * p.numVertices if compressedSize < losslessSize { p.encodeCompressed(e, snapLevel, vs) } else { p.encodeLossless(e) } } // encodeLossless encodes the polygon's Points as float64s. func (p *Polygon) encodeLossless(e *encoder) { e.writeInt8(encodingVersion) e.writeBool(true) // a legacy c++ value. must be true. e.writeBool(p.hasHoles) e.writeUint32(uint32(len(p.loops))) if e.err != nil { return } if len(p.loops) > maxEncodedLoops { e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops) return } for _, l := range p.loops { l.encode(e) } // Encode the bound. p.bound.encode(e) } func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) { e.writeUint8(uint8(encodingCompressedVersion)) e.writeUint8(uint8(snapLevel)) e.writeUvarint(uint64(len(p.loops))) if e.err != nil { return } if l := len(p.loops); l > maxEncodedLoops { e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops) return } for _, l := range p.loops { l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)]) vertices = vertices[len(l.vertices):] } // Do not write the bound, num_vertices, or has_holes_ as they can be // cheaply recomputed by decodeCompressed. Microbenchmarks show the // speed difference is inconsequential. } // Decode decodes the Polygon. func (p *Polygon) Decode(r io.Reader) error { d := &decoder{r: asByteReader(r)} version := int8(d.readUint8()) var dec func(*decoder) switch version { case encodingVersion: dec = p.decode case encodingCompressedVersion: dec = p.decodeCompressed default: return fmt.Errorf("unsupported version %d", version) } dec(d) return d.err } // maxEncodedLoops is the biggest supported number of loops in a polygon during encoding. // Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM. const maxEncodedLoops = 10000000 func (p *Polygon) decode(d *decoder) { *p = Polygon{} d.readUint8() // Ignore irrelevant serialized owns_loops_ value. p.hasHoles = d.readBool() // Polygons with no loops are explicitly allowed here: a newly created // polygon has zero loops and such polygons encode and decode properly. nloops := d.readUint32() if d.err != nil { return } if nloops > maxEncodedLoops { d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops) return } p.loops = make([]*Loop, nloops) for i := range p.loops { p.loops[i] = new(Loop) p.loops[i].decode(d) p.numVertices += len(p.loops[i].vertices) } p.bound.decode(d) if d.err != nil { return } p.subregionBound = ExpandForSubregions(p.bound) p.initEdgesAndIndex() } func (p *Polygon) decodeCompressed(d *decoder) { snapLevel := int(d.readUint8()) if snapLevel > maxLevel { d.err = fmt.Errorf("snaplevel too big: %d", snapLevel) return } // Polygons with no loops are explicitly allowed here: a newly created // polygon has zero loops and such polygons encode and decode properly. nloops := int(d.readUvarint()) if nloops > maxEncodedLoops { d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops) } p.loops = make([]*Loop, nloops) for i := range p.loops { p.loops[i] = new(Loop) p.loops[i].decodeCompressed(d, snapLevel) } p.initLoopProperties() } // TODO(roberts): Differences from C++ // Centroid // SnapLevel // DistanceToPoint // DistanceToBoundary // Project // ProjectToBoundary // ApproxContains/ApproxDisjoint for Polygons // InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff} // InitToSimplified // InitToSnapped // IntersectWithPolyline // ApproxIntersectWithPolyline // SubtractFromPolyline // ApproxSubtractFromPolyline // DestructiveUnion // DestructiveApproxUnion // InitToCellUnionBorder // IsNormalized // Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons // BreakEdgesAndAddToBuilder // // clearLoops // findLoopNestingError // initToSimplifiedInternal // internalClipPolyline // clipBoundary