package sqlite3 import ( "context" "sync" "github.com/ncruces/go-sqlite3/internal/util" "github.com/tetratelabs/wazero/api" ) // CollationNeeded registers a callback to be invoked // whenever an unknown collation sequence is required. // // https://sqlite.org/c3ref/collation_needed.html func (c *Conn) CollationNeeded(cb func(db *Conn, name string)) error { var enable uint64 if cb != nil { enable = 1 } r := c.call("sqlite3_collation_needed_go", uint64(c.handle), enable) if err := c.error(r); err != nil { return err } c.collation = cb return nil } // AnyCollationNeeded uses [Conn.CollationNeeded] to register // a fake collating function for any unknown collating sequence. // The fake collating function works like BINARY. // // This can be used to load schemas that contain // one or more unknown collating sequences. func (c *Conn) AnyCollationNeeded() { c.call("sqlite3_anycollseq_init", uint64(c.handle), 0, 0) } // CreateCollation defines a new collating sequence. // // https://sqlite.org/c3ref/create_collation.html func (c *Conn) CreateCollation(name string, fn func(a, b []byte) int) error { defer c.arena.mark()() namePtr := c.arena.string(name) funcPtr := util.AddHandle(c.ctx, fn) r := c.call("sqlite3_create_collation_go", uint64(c.handle), uint64(namePtr), uint64(funcPtr)) return c.error(r) } // CreateFunction defines a new scalar SQL function. // // https://sqlite.org/c3ref/create_function.html func (c *Conn) CreateFunction(name string, nArg int, flag FunctionFlag, fn ScalarFunction) error { defer c.arena.mark()() namePtr := c.arena.string(name) funcPtr := util.AddHandle(c.ctx, fn) r := c.call("sqlite3_create_function_go", uint64(c.handle), uint64(namePtr), uint64(nArg), uint64(flag), uint64(funcPtr)) return c.error(r) } // ScalarFunction is the type of a scalar SQL function. // Implementations must not retain arg. type ScalarFunction func(ctx Context, arg ...Value) // CreateWindowFunction defines a new aggregate or aggregate window SQL function. // If fn returns a [WindowFunction], then an aggregate window function is created. // If fn returns an [io.Closer], it will be called to free resources. // // https://sqlite.org/c3ref/create_function.html func (c *Conn) CreateWindowFunction(name string, nArg int, flag FunctionFlag, fn func() AggregateFunction) error { defer c.arena.mark()() call := "sqlite3_create_aggregate_function_go" namePtr := c.arena.string(name) funcPtr := util.AddHandle(c.ctx, fn) if _, ok := fn().(WindowFunction); ok { call = "sqlite3_create_window_function_go" } r := c.call(call, uint64(c.handle), uint64(namePtr), uint64(nArg), uint64(flag), uint64(funcPtr)) return c.error(r) } // AggregateFunction is the interface an aggregate function should implement. // // https://sqlite.org/appfunc.html type AggregateFunction interface { // Step is invoked to add a row to the current window. // The function arguments, if any, corresponding to the row being added, are passed to Step. // Implementations must not retain arg. Step(ctx Context, arg ...Value) // Value is invoked to return the current (or final) value of the aggregate. Value(ctx Context) } // WindowFunction is the interface an aggregate window function should implement. // // https://sqlite.org/windowfunctions.html type WindowFunction interface { AggregateFunction // Inverse is invoked to remove the oldest presently aggregated result of Step from the current window. // The function arguments, if any, are those passed to Step for the row being removed. // Implementations must not retain arg. Inverse(ctx Context, arg ...Value) } // OverloadFunction overloads a function for a virtual table. // // https://sqlite.org/c3ref/overload_function.html func (c *Conn) OverloadFunction(name string, nArg int) error { defer c.arena.mark()() namePtr := c.arena.string(name) r := c.call("sqlite3_overload_function", uint64(c.handle), uint64(namePtr), uint64(nArg)) return c.error(r) } func destroyCallback(ctx context.Context, mod api.Module, pApp uint32) { util.DelHandle(ctx, pApp) } func collationCallback(ctx context.Context, mod api.Module, pArg, pDB, eTextRep, zName uint32) { if c, ok := ctx.Value(connKey{}).(*Conn); ok && c.handle == pDB && c.collation != nil { name := util.ReadString(mod, zName, _MAX_NAME) c.collation(c, name) } } func compareCallback(ctx context.Context, mod api.Module, pApp, nKey1, pKey1, nKey2, pKey2 uint32) uint32 { fn := util.GetHandle(ctx, pApp).(func(a, b []byte) int) return uint32(fn(util.View(mod, pKey1, uint64(nKey1)), util.View(mod, pKey2, uint64(nKey2)))) } func funcCallback(ctx context.Context, mod api.Module, pCtx, pApp, nArg, pArg uint32) { args := getFuncArgs() defer putFuncArgs(args) db := ctx.Value(connKey{}).(*Conn) fn := util.GetHandle(db.ctx, pApp).(ScalarFunction) callbackArgs(db, args[:nArg], pArg) fn(Context{db, pCtx}, args[:nArg]...) } func stepCallback(ctx context.Context, mod api.Module, pCtx, pAgg, pApp, nArg, pArg uint32) { args := getFuncArgs() defer putFuncArgs(args) db := ctx.Value(connKey{}).(*Conn) callbackArgs(db, args[:nArg], pArg) fn, _ := callbackAggregate(db, pAgg, pApp) fn.Step(Context{db, pCtx}, args[:nArg]...) } func finalCallback(ctx context.Context, mod api.Module, pCtx, pAgg, pApp uint32) { db := ctx.Value(connKey{}).(*Conn) fn, handle := callbackAggregate(db, pAgg, pApp) fn.Value(Context{db, pCtx}) util.DelHandle(ctx, handle) } func valueCallback(ctx context.Context, mod api.Module, pCtx, pAgg uint32) { db := ctx.Value(connKey{}).(*Conn) fn := util.GetHandle(db.ctx, pAgg).(AggregateFunction) fn.Value(Context{db, pCtx}) } func inverseCallback(ctx context.Context, mod api.Module, pCtx, pAgg, nArg, pArg uint32) { args := getFuncArgs() defer putFuncArgs(args) db := ctx.Value(connKey{}).(*Conn) callbackArgs(db, args[:nArg], pArg) fn := util.GetHandle(db.ctx, pAgg).(WindowFunction) fn.Inverse(Context{db, pCtx}, args[:nArg]...) } func callbackAggregate(db *Conn, pAgg, pApp uint32) (AggregateFunction, uint32) { if pApp == 0 { handle := util.ReadUint32(db.mod, pAgg) return util.GetHandle(db.ctx, handle).(AggregateFunction), handle } // We need to create the aggregate. fn := util.GetHandle(db.ctx, pApp).(func() AggregateFunction)() handle := util.AddHandle(db.ctx, fn) if pAgg != 0 { util.WriteUint32(db.mod, pAgg, handle) } return fn, handle } func callbackArgs(db *Conn, arg []Value, pArg uint32) { for i := range arg { arg[i] = Value{ c: db, handle: util.ReadUint32(db.mod, pArg+ptrlen*uint32(i)), } } } var funcArgsPool sync.Pool func putFuncArgs(p *[_MAX_FUNCTION_ARG]Value) { funcArgsPool.Put(p) } func getFuncArgs() *[_MAX_FUNCTION_ARG]Value { if p := funcArgsPool.Get(); p == nil { return new([_MAX_FUNCTION_ARG]Value) } else { return p.(*[_MAX_FUNCTION_ARG]Value) } }