package validator import ( "fmt" "reflect" "regexp" "strconv" "strings" "time" ) // extractTypeInternal gets the actual underlying type of field value. // It will dive into pointers, customTypes and return you the // underlying value and it's kind. func (v *validate) extractTypeInternal(current reflect.Value, nullable bool) (reflect.Value, reflect.Kind, bool) { BEGIN: switch current.Kind() { case reflect.Ptr: nullable = true if current.IsNil() { return current, reflect.Ptr, nullable } current = current.Elem() goto BEGIN case reflect.Interface: nullable = true if current.IsNil() { return current, reflect.Interface, nullable } current = current.Elem() goto BEGIN case reflect.Invalid: return current, reflect.Invalid, nullable default: if v.v.hasCustomFuncs { if fn, ok := v.v.customFuncs[current.Type()]; ok { current = reflect.ValueOf(fn(current)) goto BEGIN } } return current, current.Kind(), nullable } } // getStructFieldOKInternal traverses a struct to retrieve a specific field denoted by the provided namespace and // returns the field, field kind and whether is was successful in retrieving the field at all. // // NOTE: when not successful ok will be false, this can happen when a nested struct is nil and so the field // could not be retrieved because it didn't exist. func (v *validate) getStructFieldOKInternal(val reflect.Value, namespace string) (current reflect.Value, kind reflect.Kind, nullable bool, found bool) { BEGIN: current, kind, nullable = v.ExtractType(val) if kind == reflect.Invalid { return } if namespace == "" { found = true return } switch kind { case reflect.Ptr, reflect.Interface: return case reflect.Struct: typ := current.Type() fld := namespace var ns string if !typ.ConvertibleTo(timeType) { idx := strings.Index(namespace, namespaceSeparator) if idx != -1 { fld = namespace[:idx] ns = namespace[idx+1:] } else { ns = "" } bracketIdx := strings.Index(fld, leftBracket) if bracketIdx != -1 { fld = fld[:bracketIdx] ns = namespace[bracketIdx:] } val = current.FieldByName(fld) namespace = ns goto BEGIN } case reflect.Array, reflect.Slice: idx := strings.Index(namespace, leftBracket) idx2 := strings.Index(namespace, rightBracket) arrIdx, _ := strconv.Atoi(namespace[idx+1 : idx2]) if arrIdx >= current.Len() { return } startIdx := idx2 + 1 if startIdx < len(namespace) { if namespace[startIdx:startIdx+1] == namespaceSeparator { startIdx++ } } val = current.Index(arrIdx) namespace = namespace[startIdx:] goto BEGIN case reflect.Map: idx := strings.Index(namespace, leftBracket) + 1 idx2 := strings.Index(namespace, rightBracket) endIdx := idx2 if endIdx+1 < len(namespace) { if namespace[endIdx+1:endIdx+2] == namespaceSeparator { endIdx++ } } key := namespace[idx:idx2] switch current.Type().Key().Kind() { case reflect.Int: i, _ := strconv.Atoi(key) val = current.MapIndex(reflect.ValueOf(i)) namespace = namespace[endIdx+1:] case reflect.Int8: i, _ := strconv.ParseInt(key, 10, 8) val = current.MapIndex(reflect.ValueOf(int8(i))) namespace = namespace[endIdx+1:] case reflect.Int16: i, _ := strconv.ParseInt(key, 10, 16) val = current.MapIndex(reflect.ValueOf(int16(i))) namespace = namespace[endIdx+1:] case reflect.Int32: i, _ := strconv.ParseInt(key, 10, 32) val = current.MapIndex(reflect.ValueOf(int32(i))) namespace = namespace[endIdx+1:] case reflect.Int64: i, _ := strconv.ParseInt(key, 10, 64) val = current.MapIndex(reflect.ValueOf(i)) namespace = namespace[endIdx+1:] case reflect.Uint: i, _ := strconv.ParseUint(key, 10, 0) val = current.MapIndex(reflect.ValueOf(uint(i))) namespace = namespace[endIdx+1:] case reflect.Uint8: i, _ := strconv.ParseUint(key, 10, 8) val = current.MapIndex(reflect.ValueOf(uint8(i))) namespace = namespace[endIdx+1:] case reflect.Uint16: i, _ := strconv.ParseUint(key, 10, 16) val = current.MapIndex(reflect.ValueOf(uint16(i))) namespace = namespace[endIdx+1:] case reflect.Uint32: i, _ := strconv.ParseUint(key, 10, 32) val = current.MapIndex(reflect.ValueOf(uint32(i))) namespace = namespace[endIdx+1:] case reflect.Uint64: i, _ := strconv.ParseUint(key, 10, 64) val = current.MapIndex(reflect.ValueOf(i)) namespace = namespace[endIdx+1:] case reflect.Float32: f, _ := strconv.ParseFloat(key, 32) val = current.MapIndex(reflect.ValueOf(float32(f))) namespace = namespace[endIdx+1:] case reflect.Float64: f, _ := strconv.ParseFloat(key, 64) val = current.MapIndex(reflect.ValueOf(f)) namespace = namespace[endIdx+1:] case reflect.Bool: b, _ := strconv.ParseBool(key) val = current.MapIndex(reflect.ValueOf(b)) namespace = namespace[endIdx+1:] // reflect.Type = string default: val = current.MapIndex(reflect.ValueOf(key)) namespace = namespace[endIdx+1:] } goto BEGIN } // if got here there was more namespace, cannot go any deeper panic("Invalid field namespace") } // asInt returns the parameter as a int64 // or panics if it can't convert func asInt(param string) int64 { i, err := strconv.ParseInt(param, 0, 64) panicIf(err) return i } // asIntFromTimeDuration parses param as time.Duration and returns it as int64 // or panics on error. func asIntFromTimeDuration(param string) int64 { d, err := time.ParseDuration(param) if err != nil { // attempt parsing as an integer assuming nanosecond precision return asInt(param) } return int64(d) } // asIntFromType calls the proper function to parse param as int64, // given a field's Type t. func asIntFromType(t reflect.Type, param string) int64 { switch t { case timeDurationType: return asIntFromTimeDuration(param) default: return asInt(param) } } // asUint returns the parameter as a uint64 // or panics if it can't convert func asUint(param string) uint64 { i, err := strconv.ParseUint(param, 0, 64) panicIf(err) return i } // asFloat64 returns the parameter as a float64 // or panics if it can't convert func asFloat64(param string) float64 { i, err := strconv.ParseFloat(param, 64) panicIf(err) return i } // asFloat32 returns the parameter as a float32 // or panics if it can't convert func asFloat32(param string) float64 { i, err := strconv.ParseFloat(param, 32) panicIf(err) return i } // asBool returns the parameter as a bool // or panics if it can't convert func asBool(param string) bool { i, err := strconv.ParseBool(param) panicIf(err) return i } func panicIf(err error) { if err != nil { panic(err.Error()) } } // Checks if field value matches regex. If fl.Field can be cast to Stringer, it uses the Stringer interfaces // String() return value. Otherwise, it uses fl.Field's String() value. func fieldMatchesRegexByStringerValOrString(regexFn func() *regexp.Regexp, fl FieldLevel) bool { regex := regexFn() switch fl.Field().Kind() { case reflect.String: return regex.MatchString(fl.Field().String()) default: if stringer, ok := fl.Field().Interface().(fmt.Stringer); ok { return regex.MatchString(stringer.String()) } else { return regex.MatchString(fl.Field().String()) } } }