package assert import ( "bufio" "bytes" "encoding/json" "errors" "fmt" "math" "os" "reflect" "regexp" "runtime" "runtime/debug" "strings" "time" "unicode" "unicode/utf8" "github.com/davecgh/go-spew/spew" "github.com/pmezard/go-difflib/difflib" // Wrapper around gopkg.in/yaml.v3 "github.com/stretchr/testify/assert/yaml" ) //go:generate sh -c "cd ../_codegen && go build && cd - && ../_codegen/_codegen -output-package=assert -template=assertion_format.go.tmpl" // TestingT is an interface wrapper around *testing.T type TestingT interface { Errorf(format string, args ...interface{}) } // ComparisonAssertionFunc is a common function prototype when comparing two values. Can be useful // for table driven tests. type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool // ValueAssertionFunc is a common function prototype when validating a single value. Can be useful // for table driven tests. type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool // BoolAssertionFunc is a common function prototype when validating a bool value. Can be useful // for table driven tests. type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool // ErrorAssertionFunc is a common function prototype when validating an error value. Can be useful // for table driven tests. type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool // PanicAssertionFunc is a common function prototype when validating a panic value. Can be useful // for table driven tests. type PanicAssertionFunc = func(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool // Comparison is a custom function that returns true on success and false on failure type Comparison func() (success bool) /* Helper functions */ // ObjectsAreEqual determines if two objects are considered equal. // // This function does no assertion of any kind. func ObjectsAreEqual(expected, actual interface{}) bool { if expected == nil || actual == nil { return expected == actual } exp, ok := expected.([]byte) if !ok { return reflect.DeepEqual(expected, actual) } act, ok := actual.([]byte) if !ok { return false } if exp == nil || act == nil { return exp == nil && act == nil } return bytes.Equal(exp, act) } // copyExportedFields iterates downward through nested data structures and creates a copy // that only contains the exported struct fields. func copyExportedFields(expected interface{}) interface{} { if isNil(expected) { return expected } expectedType := reflect.TypeOf(expected) expectedKind := expectedType.Kind() expectedValue := reflect.ValueOf(expected) switch expectedKind { case reflect.Struct: result := reflect.New(expectedType).Elem() for i := 0; i < expectedType.NumField(); i++ { field := expectedType.Field(i) isExported := field.IsExported() if isExported { fieldValue := expectedValue.Field(i) if isNil(fieldValue) || isNil(fieldValue.Interface()) { continue } newValue := copyExportedFields(fieldValue.Interface()) result.Field(i).Set(reflect.ValueOf(newValue)) } } return result.Interface() case reflect.Ptr: result := reflect.New(expectedType.Elem()) unexportedRemoved := copyExportedFields(expectedValue.Elem().Interface()) result.Elem().Set(reflect.ValueOf(unexportedRemoved)) return result.Interface() case reflect.Array, reflect.Slice: var result reflect.Value if expectedKind == reflect.Array { result = reflect.New(reflect.ArrayOf(expectedValue.Len(), expectedType.Elem())).Elem() } else { result = reflect.MakeSlice(expectedType, expectedValue.Len(), expectedValue.Len()) } for i := 0; i < expectedValue.Len(); i++ { index := expectedValue.Index(i) if isNil(index) { continue } unexportedRemoved := copyExportedFields(index.Interface()) result.Index(i).Set(reflect.ValueOf(unexportedRemoved)) } return result.Interface() case reflect.Map: result := reflect.MakeMap(expectedType) for _, k := range expectedValue.MapKeys() { index := expectedValue.MapIndex(k) unexportedRemoved := copyExportedFields(index.Interface()) result.SetMapIndex(k, reflect.ValueOf(unexportedRemoved)) } return result.Interface() default: return expected } } // ObjectsExportedFieldsAreEqual determines if the exported (public) fields of two objects are // considered equal. This comparison of only exported fields is applied recursively to nested data // structures. // // This function does no assertion of any kind. // // Deprecated: Use [EqualExportedValues] instead. func ObjectsExportedFieldsAreEqual(expected, actual interface{}) bool { expectedCleaned := copyExportedFields(expected) actualCleaned := copyExportedFields(actual) return ObjectsAreEqualValues(expectedCleaned, actualCleaned) } // ObjectsAreEqualValues gets whether two objects are equal, or if their // values are equal. func ObjectsAreEqualValues(expected, actual interface{}) bool { if ObjectsAreEqual(expected, actual) { return true } expectedValue := reflect.ValueOf(expected) actualValue := reflect.ValueOf(actual) if !expectedValue.IsValid() || !actualValue.IsValid() { return false } expectedType := expectedValue.Type() actualType := actualValue.Type() if !expectedType.ConvertibleTo(actualType) { return false } if !isNumericType(expectedType) || !isNumericType(actualType) { // Attempt comparison after type conversion return reflect.DeepEqual( expectedValue.Convert(actualType).Interface(), actual, ) } // If BOTH values are numeric, there are chances of false positives due // to overflow or underflow. So, we need to make sure to always convert // the smaller type to a larger type before comparing. if expectedType.Size() >= actualType.Size() { return actualValue.Convert(expectedType).Interface() == expected } return expectedValue.Convert(actualType).Interface() == actual } // isNumericType returns true if the type is one of: // int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, // float32, float64, complex64, complex128 func isNumericType(t reflect.Type) bool { return t.Kind() >= reflect.Int && t.Kind() <= reflect.Complex128 } /* CallerInfo is necessary because the assert functions use the testing object internally, causing it to print the file:line of the assert method, rather than where the problem actually occurred in calling code.*/ // CallerInfo returns an array of strings containing the file and line number // of each stack frame leading from the current test to the assert call that // failed. func CallerInfo() []string { var pc uintptr var ok bool var file string var line int var name string callers := []string{} for i := 0; ; i++ { pc, file, line, ok = runtime.Caller(i) if !ok { // The breaks below failed to terminate the loop, and we ran off the // end of the call stack. break } // This is a huge edge case, but it will panic if this is the case, see #180 if file == "" { break } f := runtime.FuncForPC(pc) if f == nil { break } name = f.Name() // testing.tRunner is the standard library function that calls // tests. Subtests are called directly by tRunner, without going through // the Test/Benchmark/Example function that contains the t.Run calls, so // with subtests we should break when we hit tRunner, without adding it // to the list of callers. if name == "testing.tRunner" { break } parts := strings.Split(file, "/") if len(parts) > 1 { filename := parts[len(parts)-1] dir := parts[len(parts)-2] if (dir != "assert" && dir != "mock" && dir != "require") || filename == "mock_test.go" { callers = append(callers, fmt.Sprintf("%s:%d", file, line)) } } // Drop the package segments := strings.Split(name, ".") name = segments[len(segments)-1] if isTest(name, "Test") || isTest(name, "Benchmark") || isTest(name, "Example") { break } } return callers } // Stolen from the `go test` tool. // isTest tells whether name looks like a test (or benchmark, according to prefix). // It is a Test (say) if there is a character after Test that is not a lower-case letter. // We don't want TesticularCancer. func isTest(name, prefix string) bool { if !strings.HasPrefix(name, prefix) { return false } if len(name) == len(prefix) { // "Test" is ok return true } r, _ := utf8.DecodeRuneInString(name[len(prefix):]) return !unicode.IsLower(r) } func messageFromMsgAndArgs(msgAndArgs ...interface{}) string { if len(msgAndArgs) == 0 || msgAndArgs == nil { return "" } if len(msgAndArgs) == 1 { msg := msgAndArgs[0] if msgAsStr, ok := msg.(string); ok { return msgAsStr } return fmt.Sprintf("%+v", msg) } if len(msgAndArgs) > 1 { return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...) } return "" } // Aligns the provided message so that all lines after the first line start at the same location as the first line. // Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab). // The longestLabelLen parameter specifies the length of the longest label in the output (required because this is the // basis on which the alignment occurs). func indentMessageLines(message string, longestLabelLen int) string { outBuf := new(bytes.Buffer) for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ { // no need to align first line because it starts at the correct location (after the label) if i != 0 { // append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t") } outBuf.WriteString(scanner.Text()) } return outBuf.String() } type failNower interface { FailNow() } // FailNow fails test func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } Fail(t, failureMessage, msgAndArgs...) // We cannot extend TestingT with FailNow() and // maintain backwards compatibility, so we fallback // to panicking when FailNow is not available in // TestingT. // See issue #263 if t, ok := t.(failNower); ok { t.FailNow() } else { panic("test failed and t is missing `FailNow()`") } return false } // Fail reports a failure through func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } content := []labeledContent{ {"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")}, {"Error", failureMessage}, } // Add test name if the Go version supports it if n, ok := t.(interface { Name() string }); ok { content = append(content, labeledContent{"Test", n.Name()}) } message := messageFromMsgAndArgs(msgAndArgs...) if len(message) > 0 { content = append(content, labeledContent{"Messages", message}) } t.Errorf("\n%s", ""+labeledOutput(content...)) return false } type labeledContent struct { label string content string } // labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner: // // \t{{label}}:{{align_spaces}}\t{{content}}\n // // The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label. // If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this // alignment is achieved, "\t{{content}}\n" is added for the output. // // If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line. func labeledOutput(content ...labeledContent) string { longestLabel := 0 for _, v := range content { if len(v.label) > longestLabel { longestLabel = len(v.label) } } var output string for _, v := range content { output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n" } return output } // Implements asserts that an object is implemented by the specified interface. // // assert.Implements(t, (*MyInterface)(nil), new(MyObject)) func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } interfaceType := reflect.TypeOf(interfaceObject).Elem() if object == nil { return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...) } if !reflect.TypeOf(object).Implements(interfaceType) { return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...) } return true } // NotImplements asserts that an object does not implement the specified interface. // // assert.NotImplements(t, (*MyInterface)(nil), new(MyObject)) func NotImplements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } interfaceType := reflect.TypeOf(interfaceObject).Elem() if object == nil { return Fail(t, fmt.Sprintf("Cannot check if nil does not implement %v", interfaceType), msgAndArgs...) } if reflect.TypeOf(object).Implements(interfaceType) { return Fail(t, fmt.Sprintf("%T implements %v", object, interfaceType), msgAndArgs...) } return true } // IsType asserts that the specified objects are of the same type. func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) { return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...) } return true } // Equal asserts that two objects are equal. // // assert.Equal(t, 123, 123) // // Pointer variable equality is determined based on the equality of the // referenced values (as opposed to the memory addresses). Function equality // cannot be determined and will always fail. func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if err := validateEqualArgs(expected, actual); err != nil { return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)", expected, actual, err), msgAndArgs...) } if !ObjectsAreEqual(expected, actual) { diff := diff(expected, actual) expected, actual = formatUnequalValues(expected, actual) return Fail(t, fmt.Sprintf("Not equal: \n"+ "expected: %s\n"+ "actual : %s%s", expected, actual, diff), msgAndArgs...) } return true } // validateEqualArgs checks whether provided arguments can be safely used in the // Equal/NotEqual functions. func validateEqualArgs(expected, actual interface{}) error { if expected == nil && actual == nil { return nil } if isFunction(expected) || isFunction(actual) { return errors.New("cannot take func type as argument") } return nil } // Same asserts that two pointers reference the same object. // // assert.Same(t, ptr1, ptr2) // // Both arguments must be pointer variables. Pointer variable sameness is // determined based on the equality of both type and value. func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } same, ok := samePointers(expected, actual) if !ok { return Fail(t, "Both arguments must be pointers", msgAndArgs...) } if !same { // both are pointers but not the same type & pointing to the same address return Fail(t, fmt.Sprintf("Not same: \n"+ "expected: %p %#v\n"+ "actual : %p %#v", expected, expected, actual, actual), msgAndArgs...) } return true } // NotSame asserts that two pointers do not reference the same object. // // assert.NotSame(t, ptr1, ptr2) // // Both arguments must be pointer variables. Pointer variable sameness is // determined based on the equality of both type and value. func NotSame(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } same, ok := samePointers(expected, actual) if !ok { //fails when the arguments are not pointers return !(Fail(t, "Both arguments must be pointers", msgAndArgs...)) } if same { return Fail(t, fmt.Sprintf( "Expected and actual point to the same object: %p %#v", expected, expected), msgAndArgs...) } return true } // samePointers checks if two generic interface objects are pointers of the same // type pointing to the same object. It returns two values: same indicating if // they are the same type and point to the same object, and ok indicating that // both inputs are pointers. func samePointers(first, second interface{}) (same bool, ok bool) { firstPtr, secondPtr := reflect.ValueOf(first), reflect.ValueOf(second) if firstPtr.Kind() != reflect.Ptr || secondPtr.Kind() != reflect.Ptr { return false, false //not both are pointers } firstType, secondType := reflect.TypeOf(first), reflect.TypeOf(second) if firstType != secondType { return false, true // both are pointers, but of different types } // compare pointer addresses return first == second, true } // formatUnequalValues takes two values of arbitrary types and returns string // representations appropriate to be presented to the user. // // If the values are not of like type, the returned strings will be prefixed // with the type name, and the value will be enclosed in parentheses similar // to a type conversion in the Go grammar. func formatUnequalValues(expected, actual interface{}) (e string, a string) { if reflect.TypeOf(expected) != reflect.TypeOf(actual) { return fmt.Sprintf("%T(%s)", expected, truncatingFormat(expected)), fmt.Sprintf("%T(%s)", actual, truncatingFormat(actual)) } switch expected.(type) { case time.Duration: return fmt.Sprintf("%v", expected), fmt.Sprintf("%v", actual) } return truncatingFormat(expected), truncatingFormat(actual) } // truncatingFormat formats the data and truncates it if it's too long. // // This helps keep formatted error messages lines from exceeding the // bufio.MaxScanTokenSize max line length that the go testing framework imposes. func truncatingFormat(data interface{}) string { value := fmt.Sprintf("%#v", data) max := bufio.MaxScanTokenSize - 100 // Give us some space the type info too if needed. if len(value) > max { value = value[0:max] + "<... truncated>" } return value } // EqualValues asserts that two objects are equal or convertible to the larger // type and equal. // // assert.EqualValues(t, uint32(123), int32(123)) func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !ObjectsAreEqualValues(expected, actual) { diff := diff(expected, actual) expected, actual = formatUnequalValues(expected, actual) return Fail(t, fmt.Sprintf("Not equal: \n"+ "expected: %s\n"+ "actual : %s%s", expected, actual, diff), msgAndArgs...) } return true } // EqualExportedValues asserts that the types of two objects are equal and their public // fields are also equal. This is useful for comparing structs that have private fields // that could potentially differ. // // type S struct { // Exported int // notExported int // } // assert.EqualExportedValues(t, S{1, 2}, S{1, 3}) => true // assert.EqualExportedValues(t, S{1, 2}, S{2, 3}) => false func EqualExportedValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } aType := reflect.TypeOf(expected) bType := reflect.TypeOf(actual) if aType != bType { return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...) } expected = copyExportedFields(expected) actual = copyExportedFields(actual) if !ObjectsAreEqualValues(expected, actual) { diff := diff(expected, actual) expected, actual = formatUnequalValues(expected, actual) return Fail(t, fmt.Sprintf("Not equal (comparing only exported fields): \n"+ "expected: %s\n"+ "actual : %s%s", expected, actual, diff), msgAndArgs...) } return true } // Exactly asserts that two objects are equal in value and type. // // assert.Exactly(t, int32(123), int64(123)) func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } aType := reflect.TypeOf(expected) bType := reflect.TypeOf(actual) if aType != bType { return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...) } return Equal(t, expected, actual, msgAndArgs...) } // NotNil asserts that the specified object is not nil. // // assert.NotNil(t, err) func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool { if !isNil(object) { return true } if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, "Expected value not to be nil.", msgAndArgs...) } // isNil checks if a specified object is nil or not, without Failing. func isNil(object interface{}) bool { if object == nil { return true } value := reflect.ValueOf(object) switch value.Kind() { case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: return value.IsNil() } return false } // Nil asserts that the specified object is nil. // // assert.Nil(t, err) func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool { if isNil(object) { return true } if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...) } // isEmpty gets whether the specified object is considered empty or not. func isEmpty(object interface{}) bool { // get nil case out of the way if object == nil { return true } objValue := reflect.ValueOf(object) switch objValue.Kind() { // collection types are empty when they have no element case reflect.Chan, reflect.Map, reflect.Slice: return objValue.Len() == 0 // pointers are empty if nil or if the value they point to is empty case reflect.Ptr: if objValue.IsNil() { return true } deref := objValue.Elem().Interface() return isEmpty(deref) // for all other types, compare against the zero value // array types are empty when they match their zero-initialized state default: zero := reflect.Zero(objValue.Type()) return reflect.DeepEqual(object, zero.Interface()) } } // Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either // a slice or a channel with len == 0. // // assert.Empty(t, obj) func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool { pass := isEmpty(object) if !pass { if h, ok := t.(tHelper); ok { h.Helper() } Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...) } return pass } // NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either // a slice or a channel with len == 0. // // if assert.NotEmpty(t, obj) { // assert.Equal(t, "two", obj[1]) // } func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool { pass := !isEmpty(object) if !pass { if h, ok := t.(tHelper); ok { h.Helper() } Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...) } return pass } // getLen tries to get the length of an object. // It returns (0, false) if impossible. func getLen(x interface{}) (length int, ok bool) { v := reflect.ValueOf(x) defer func() { ok = recover() == nil }() return v.Len(), true } // Len asserts that the specified object has specific length. // Len also fails if the object has a type that len() not accept. // // assert.Len(t, mySlice, 3) func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } l, ok := getLen(object) if !ok { return Fail(t, fmt.Sprintf("\"%v\" could not be applied builtin len()", object), msgAndArgs...) } if l != length { return Fail(t, fmt.Sprintf("\"%v\" should have %d item(s), but has %d", object, length, l), msgAndArgs...) } return true } // True asserts that the specified value is true. // // assert.True(t, myBool) func True(t TestingT, value bool, msgAndArgs ...interface{}) bool { if !value { if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, "Should be true", msgAndArgs...) } return true } // False asserts that the specified value is false. // // assert.False(t, myBool) func False(t TestingT, value bool, msgAndArgs ...interface{}) bool { if value { if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, "Should be false", msgAndArgs...) } return true } // NotEqual asserts that the specified values are NOT equal. // // assert.NotEqual(t, obj1, obj2) // // Pointer variable equality is determined based on the equality of the // referenced values (as opposed to the memory addresses). func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if err := validateEqualArgs(expected, actual); err != nil { return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)", expected, actual, err), msgAndArgs...) } if ObjectsAreEqual(expected, actual) { return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...) } return true } // NotEqualValues asserts that two objects are not equal even when converted to the same type // // assert.NotEqualValues(t, obj1, obj2) func NotEqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if ObjectsAreEqualValues(expected, actual) { return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...) } return true } // containsElement try loop over the list check if the list includes the element. // return (false, false) if impossible. // return (true, false) if element was not found. // return (true, true) if element was found. func containsElement(list interface{}, element interface{}) (ok, found bool) { listValue := reflect.ValueOf(list) listType := reflect.TypeOf(list) if listType == nil { return false, false } listKind := listType.Kind() defer func() { if e := recover(); e != nil { ok = false found = false } }() if listKind == reflect.String { elementValue := reflect.ValueOf(element) return true, strings.Contains(listValue.String(), elementValue.String()) } if listKind == reflect.Map { mapKeys := listValue.MapKeys() for i := 0; i < len(mapKeys); i++ { if ObjectsAreEqual(mapKeys[i].Interface(), element) { return true, true } } return true, false } for i := 0; i < listValue.Len(); i++ { if ObjectsAreEqual(listValue.Index(i).Interface(), element) { return true, true } } return true, false } // Contains asserts that the specified string, list(array, slice...) or map contains the // specified substring or element. // // assert.Contains(t, "Hello World", "World") // assert.Contains(t, ["Hello", "World"], "World") // assert.Contains(t, {"Hello": "World"}, "Hello") func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } ok, found := containsElement(s, contains) if !ok { return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", s), msgAndArgs...) } if !found { return Fail(t, fmt.Sprintf("%#v does not contain %#v", s, contains), msgAndArgs...) } return true } // NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the // specified substring or element. // // assert.NotContains(t, "Hello World", "Earth") // assert.NotContains(t, ["Hello", "World"], "Earth") // assert.NotContains(t, {"Hello": "World"}, "Earth") func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } ok, found := containsElement(s, contains) if !ok { return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", s), msgAndArgs...) } if found { return Fail(t, fmt.Sprintf("%#v should not contain %#v", s, contains), msgAndArgs...) } return true } // Subset asserts that the specified list(array, slice...) or map contains all // elements given in the specified subset list(array, slice...) or map. // // assert.Subset(t, [1, 2, 3], [1, 2]) // assert.Subset(t, {"x": 1, "y": 2}, {"x": 1}) func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) { if h, ok := t.(tHelper); ok { h.Helper() } if subset == nil { return true // we consider nil to be equal to the nil set } listKind := reflect.TypeOf(list).Kind() if listKind != reflect.Array && listKind != reflect.Slice && listKind != reflect.Map { return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...) } subsetKind := reflect.TypeOf(subset).Kind() if subsetKind != reflect.Array && subsetKind != reflect.Slice && listKind != reflect.Map { return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...) } if subsetKind == reflect.Map && listKind == reflect.Map { subsetMap := reflect.ValueOf(subset) actualMap := reflect.ValueOf(list) for _, k := range subsetMap.MapKeys() { ev := subsetMap.MapIndex(k) av := actualMap.MapIndex(k) if !av.IsValid() { return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, subset), msgAndArgs...) } if !ObjectsAreEqual(ev.Interface(), av.Interface()) { return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, subset), msgAndArgs...) } } return true } subsetList := reflect.ValueOf(subset) for i := 0; i < subsetList.Len(); i++ { element := subsetList.Index(i).Interface() ok, found := containsElement(list, element) if !ok { return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", list), msgAndArgs...) } if !found { return Fail(t, fmt.Sprintf("%#v does not contain %#v", list, element), msgAndArgs...) } } return true } // NotSubset asserts that the specified list(array, slice...) or map does NOT // contain all elements given in the specified subset list(array, slice...) or // map. // // assert.NotSubset(t, [1, 3, 4], [1, 2]) // assert.NotSubset(t, {"x": 1, "y": 2}, {"z": 3}) func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) { if h, ok := t.(tHelper); ok { h.Helper() } if subset == nil { return Fail(t, "nil is the empty set which is a subset of every set", msgAndArgs...) } listKind := reflect.TypeOf(list).Kind() if listKind != reflect.Array && listKind != reflect.Slice && listKind != reflect.Map { return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...) } subsetKind := reflect.TypeOf(subset).Kind() if subsetKind != reflect.Array && subsetKind != reflect.Slice && listKind != reflect.Map { return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...) } if subsetKind == reflect.Map && listKind == reflect.Map { subsetMap := reflect.ValueOf(subset) actualMap := reflect.ValueOf(list) for _, k := range subsetMap.MapKeys() { ev := subsetMap.MapIndex(k) av := actualMap.MapIndex(k) if !av.IsValid() { return true } if !ObjectsAreEqual(ev.Interface(), av.Interface()) { return true } } return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...) } subsetList := reflect.ValueOf(subset) for i := 0; i < subsetList.Len(); i++ { element := subsetList.Index(i).Interface() ok, found := containsElement(list, element) if !ok { return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...) } if !found { return true } } return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...) } // ElementsMatch asserts that the specified listA(array, slice...) is equal to specified // listB(array, slice...) ignoring the order of the elements. If there are duplicate elements, // the number of appearances of each of them in both lists should match. // // assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2]) func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) { if h, ok := t.(tHelper); ok { h.Helper() } if isEmpty(listA) && isEmpty(listB) { return true } if !isList(t, listA, msgAndArgs...) || !isList(t, listB, msgAndArgs...) { return false } extraA, extraB := diffLists(listA, listB) if len(extraA) == 0 && len(extraB) == 0 { return true } return Fail(t, formatListDiff(listA, listB, extraA, extraB), msgAndArgs...) } // isList checks that the provided value is array or slice. func isList(t TestingT, list interface{}, msgAndArgs ...interface{}) (ok bool) { kind := reflect.TypeOf(list).Kind() if kind != reflect.Array && kind != reflect.Slice { return Fail(t, fmt.Sprintf("%q has an unsupported type %s, expecting array or slice", list, kind), msgAndArgs...) } return true } // diffLists diffs two arrays/slices and returns slices of elements that are only in A and only in B. // If some element is present multiple times, each instance is counted separately (e.g. if something is 2x in A and // 5x in B, it will be 0x in extraA and 3x in extraB). The order of items in both lists is ignored. func diffLists(listA, listB interface{}) (extraA, extraB []interface{}) { aValue := reflect.ValueOf(listA) bValue := reflect.ValueOf(listB) aLen := aValue.Len() bLen := bValue.Len() // Mark indexes in bValue that we already used visited := make([]bool, bLen) for i := 0; i < aLen; i++ { element := aValue.Index(i).Interface() found := false for j := 0; j < bLen; j++ { if visited[j] { continue } if ObjectsAreEqual(bValue.Index(j).Interface(), element) { visited[j] = true found = true break } } if !found { extraA = append(extraA, element) } } for j := 0; j < bLen; j++ { if visited[j] { continue } extraB = append(extraB, bValue.Index(j).Interface()) } return } func formatListDiff(listA, listB interface{}, extraA, extraB []interface{}) string { var msg bytes.Buffer msg.WriteString("elements differ") if len(extraA) > 0 { msg.WriteString("\n\nextra elements in list A:\n") msg.WriteString(spewConfig.Sdump(extraA)) } if len(extraB) > 0 { msg.WriteString("\n\nextra elements in list B:\n") msg.WriteString(spewConfig.Sdump(extraB)) } msg.WriteString("\n\nlistA:\n") msg.WriteString(spewConfig.Sdump(listA)) msg.WriteString("\n\nlistB:\n") msg.WriteString(spewConfig.Sdump(listB)) return msg.String() } // NotElementsMatch asserts that the specified listA(array, slice...) is NOT equal to specified // listB(array, slice...) ignoring the order of the elements. If there are duplicate elements, // the number of appearances of each of them in both lists should not match. // This is an inverse of ElementsMatch. // // assert.NotElementsMatch(t, [1, 1, 2, 3], [1, 1, 2, 3]) -> false // // assert.NotElementsMatch(t, [1, 1, 2, 3], [1, 2, 3]) -> true // // assert.NotElementsMatch(t, [1, 2, 3], [1, 2, 4]) -> true func NotElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) { if h, ok := t.(tHelper); ok { h.Helper() } if isEmpty(listA) && isEmpty(listB) { return Fail(t, "listA and listB contain the same elements", msgAndArgs) } if !isList(t, listA, msgAndArgs...) { return Fail(t, "listA is not a list type", msgAndArgs...) } if !isList(t, listB, msgAndArgs...) { return Fail(t, "listB is not a list type", msgAndArgs...) } extraA, extraB := diffLists(listA, listB) if len(extraA) == 0 && len(extraB) == 0 { return Fail(t, "listA and listB contain the same elements", msgAndArgs) } return true } // Condition uses a Comparison to assert a complex condition. func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } result := comp() if !result { Fail(t, "Condition failed!", msgAndArgs...) } return result } // PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics // methods, and represents a simple func that takes no arguments, and returns nothing. type PanicTestFunc func() // didPanic returns true if the function passed to it panics. Otherwise, it returns false. func didPanic(f PanicTestFunc) (didPanic bool, message interface{}, stack string) { didPanic = true defer func() { message = recover() if didPanic { stack = string(debug.Stack()) } }() // call the target function f() didPanic = false return } // Panics asserts that the code inside the specified PanicTestFunc panics. // // assert.Panics(t, func(){ GoCrazy() }) func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if funcDidPanic, panicValue, _ := didPanic(f); !funcDidPanic { return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...) } return true } // PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that // the recovered panic value equals the expected panic value. // // assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() }) func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } funcDidPanic, panicValue, panickedStack := didPanic(f) if !funcDidPanic { return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...) } if panicValue != expected { return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, expected, panicValue, panickedStack), msgAndArgs...) } return true } // PanicsWithError asserts that the code inside the specified PanicTestFunc // panics, and that the recovered panic value is an error that satisfies the // EqualError comparison. // // assert.PanicsWithError(t, "crazy error", func(){ GoCrazy() }) func PanicsWithError(t TestingT, errString string, f PanicTestFunc, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } funcDidPanic, panicValue, panickedStack := didPanic(f) if !funcDidPanic { return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...) } panicErr, ok := panicValue.(error) if !ok || panicErr.Error() != errString { return Fail(t, fmt.Sprintf("func %#v should panic with error message:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, errString, panicValue, panickedStack), msgAndArgs...) } return true } // NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic. // // assert.NotPanics(t, func(){ RemainCalm() }) func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if funcDidPanic, panicValue, panickedStack := didPanic(f); funcDidPanic { return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v\n\tPanic stack:\t%s", f, panicValue, panickedStack), msgAndArgs...) } return true } // WithinDuration asserts that the two times are within duration delta of each other. // // assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second) func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } dt := expected.Sub(actual) if dt < -delta || dt > delta { return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...) } return true } // WithinRange asserts that a time is within a time range (inclusive). // // assert.WithinRange(t, time.Now(), time.Now().Add(-time.Second), time.Now().Add(time.Second)) func WithinRange(t TestingT, actual, start, end time.Time, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if end.Before(start) { return Fail(t, "Start should be before end", msgAndArgs...) } if actual.Before(start) { return Fail(t, fmt.Sprintf("Time %v expected to be in time range %v to %v, but is before the range", actual, start, end), msgAndArgs...) } else if actual.After(end) { return Fail(t, fmt.Sprintf("Time %v expected to be in time range %v to %v, but is after the range", actual, start, end), msgAndArgs...) } return true } func toFloat(x interface{}) (float64, bool) { var xf float64 xok := true switch xn := x.(type) { case uint: xf = float64(xn) case uint8: xf = float64(xn) case uint16: xf = float64(xn) case uint32: xf = float64(xn) case uint64: xf = float64(xn) case int: xf = float64(xn) case int8: xf = float64(xn) case int16: xf = float64(xn) case int32: xf = float64(xn) case int64: xf = float64(xn) case float32: xf = float64(xn) case float64: xf = xn case time.Duration: xf = float64(xn) default: xok = false } return xf, xok } // InDelta asserts that the two numerals are within delta of each other. // // assert.InDelta(t, math.Pi, 22/7.0, 0.01) func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } af, aok := toFloat(expected) bf, bok := toFloat(actual) if !aok || !bok { return Fail(t, "Parameters must be numerical", msgAndArgs...) } if math.IsNaN(af) && math.IsNaN(bf) { return true } if math.IsNaN(af) { return Fail(t, "Expected must not be NaN", msgAndArgs...) } if math.IsNaN(bf) { return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...) } dt := af - bf if dt < -delta || dt > delta { return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...) } return true } // InDeltaSlice is the same as InDelta, except it compares two slices. func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if expected == nil || actual == nil || reflect.TypeOf(actual).Kind() != reflect.Slice || reflect.TypeOf(expected).Kind() != reflect.Slice { return Fail(t, "Parameters must be slice", msgAndArgs...) } actualSlice := reflect.ValueOf(actual) expectedSlice := reflect.ValueOf(expected) for i := 0; i < actualSlice.Len(); i++ { result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...) if !result { return result } } return true } // InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys. func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if expected == nil || actual == nil || reflect.TypeOf(actual).Kind() != reflect.Map || reflect.TypeOf(expected).Kind() != reflect.Map { return Fail(t, "Arguments must be maps", msgAndArgs...) } expectedMap := reflect.ValueOf(expected) actualMap := reflect.ValueOf(actual) if expectedMap.Len() != actualMap.Len() { return Fail(t, "Arguments must have the same number of keys", msgAndArgs...) } for _, k := range expectedMap.MapKeys() { ev := expectedMap.MapIndex(k) av := actualMap.MapIndex(k) if !ev.IsValid() { return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...) } if !av.IsValid() { return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...) } if !InDelta( t, ev.Interface(), av.Interface(), delta, msgAndArgs..., ) { return false } } return true } func calcRelativeError(expected, actual interface{}) (float64, error) { af, aok := toFloat(expected) bf, bok := toFloat(actual) if !aok || !bok { return 0, fmt.Errorf("Parameters must be numerical") } if math.IsNaN(af) && math.IsNaN(bf) { return 0, nil } if math.IsNaN(af) { return 0, errors.New("expected value must not be NaN") } if af == 0 { return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error") } if math.IsNaN(bf) { return 0, errors.New("actual value must not be NaN") } return math.Abs(af-bf) / math.Abs(af), nil } // InEpsilon asserts that expected and actual have a relative error less than epsilon func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if math.IsNaN(epsilon) { return Fail(t, "epsilon must not be NaN", msgAndArgs...) } actualEpsilon, err := calcRelativeError(expected, actual) if err != nil { return Fail(t, err.Error(), msgAndArgs...) } if math.IsNaN(actualEpsilon) { return Fail(t, "relative error is NaN", msgAndArgs...) } if actualEpsilon > epsilon { return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+ " < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...) } return true } // InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices. func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if expected == nil || actual == nil { return Fail(t, "Parameters must be slice", msgAndArgs...) } expectedSlice := reflect.ValueOf(expected) actualSlice := reflect.ValueOf(actual) if expectedSlice.Type().Kind() != reflect.Slice { return Fail(t, "Expected value must be slice", msgAndArgs...) } expectedLen := expectedSlice.Len() if !IsType(t, expected, actual) || !Len(t, actual, expectedLen) { return false } for i := 0; i < expectedLen; i++ { if !InEpsilon(t, expectedSlice.Index(i).Interface(), actualSlice.Index(i).Interface(), epsilon, "at index %d", i) { return false } } return true } /* Errors */ // NoError asserts that a function returned no error (i.e. `nil`). // // actualObj, err := SomeFunction() // if assert.NoError(t, err) { // assert.Equal(t, expectedObj, actualObj) // } func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool { if err != nil { if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...) } return true } // Error asserts that a function returned an error (i.e. not `nil`). // // actualObj, err := SomeFunction() // if assert.Error(t, err) { // assert.Equal(t, expectedError, err) // } func Error(t TestingT, err error, msgAndArgs ...interface{}) bool { if err == nil { if h, ok := t.(tHelper); ok { h.Helper() } return Fail(t, "An error is expected but got nil.", msgAndArgs...) } return true } // EqualError asserts that a function returned an error (i.e. not `nil`) // and that it is equal to the provided error. // // actualObj, err := SomeFunction() // assert.EqualError(t, err, expectedErrorString) func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !Error(t, theError, msgAndArgs...) { return false } expected := errString actual := theError.Error() // don't need to use deep equals here, we know they are both strings if expected != actual { return Fail(t, fmt.Sprintf("Error message not equal:\n"+ "expected: %q\n"+ "actual : %q", expected, actual), msgAndArgs...) } return true } // ErrorContains asserts that a function returned an error (i.e. not `nil`) // and that the error contains the specified substring. // // actualObj, err := SomeFunction() // assert.ErrorContains(t, err, expectedErrorSubString) func ErrorContains(t TestingT, theError error, contains string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !Error(t, theError, msgAndArgs...) { return false } actual := theError.Error() if !strings.Contains(actual, contains) { return Fail(t, fmt.Sprintf("Error %#v does not contain %#v", actual, contains), msgAndArgs...) } return true } // matchRegexp return true if a specified regexp matches a string. func matchRegexp(rx interface{}, str interface{}) bool { var r *regexp.Regexp if rr, ok := rx.(*regexp.Regexp); ok { r = rr } else { r = regexp.MustCompile(fmt.Sprint(rx)) } switch v := str.(type) { case []byte: return r.Match(v) case string: return r.MatchString(v) default: return r.MatchString(fmt.Sprint(v)) } } // Regexp asserts that a specified regexp matches a string. // // assert.Regexp(t, regexp.MustCompile("start"), "it's starting") // assert.Regexp(t, "start...$", "it's not starting") func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } match := matchRegexp(rx, str) if !match { Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...) } return match } // NotRegexp asserts that a specified regexp does not match a string. // // assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting") // assert.NotRegexp(t, "^start", "it's not starting") func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } match := matchRegexp(rx, str) if match { Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...) } return !match } // Zero asserts that i is the zero value for its type. func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) { return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...) } return true } // NotZero asserts that i is not the zero value for its type. func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) { return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...) } return true } // FileExists checks whether a file exists in the given path. It also fails if // the path points to a directory or there is an error when trying to check the file. func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } info, err := os.Lstat(path) if err != nil { if os.IsNotExist(err) { return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...) } return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...) } if info.IsDir() { return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...) } return true } // NoFileExists checks whether a file does not exist in a given path. It fails // if the path points to an existing _file_ only. func NoFileExists(t TestingT, path string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } info, err := os.Lstat(path) if err != nil { return true } if info.IsDir() { return true } return Fail(t, fmt.Sprintf("file %q exists", path), msgAndArgs...) } // DirExists checks whether a directory exists in the given path. It also fails // if the path is a file rather a directory or there is an error checking whether it exists. func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } info, err := os.Lstat(path) if err != nil { if os.IsNotExist(err) { return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...) } return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...) } if !info.IsDir() { return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...) } return true } // NoDirExists checks whether a directory does not exist in the given path. // It fails if the path points to an existing _directory_ only. func NoDirExists(t TestingT, path string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } info, err := os.Lstat(path) if err != nil { if os.IsNotExist(err) { return true } return true } if !info.IsDir() { return true } return Fail(t, fmt.Sprintf("directory %q exists", path), msgAndArgs...) } // JSONEq asserts that two JSON strings are equivalent. // // assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } var expectedJSONAsInterface, actualJSONAsInterface interface{} if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil { return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...) } if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil { return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...) } return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...) } // YAMLEq asserts that two YAML strings are equivalent. func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } var expectedYAMLAsInterface, actualYAMLAsInterface interface{} if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil { return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...) } if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil { return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...) } return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...) } func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) { t := reflect.TypeOf(v) k := t.Kind() if k == reflect.Ptr { t = t.Elem() k = t.Kind() } return t, k } // diff returns a diff of both values as long as both are of the same type and // are a struct, map, slice, array or string. Otherwise it returns an empty string. func diff(expected interface{}, actual interface{}) string { if expected == nil || actual == nil { return "" } et, ek := typeAndKind(expected) at, _ := typeAndKind(actual) if et != at { return "" } if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String { return "" } var e, a string switch et { case reflect.TypeOf(""): e = reflect.ValueOf(expected).String() a = reflect.ValueOf(actual).String() case reflect.TypeOf(time.Time{}): e = spewConfigStringerEnabled.Sdump(expected) a = spewConfigStringerEnabled.Sdump(actual) default: e = spewConfig.Sdump(expected) a = spewConfig.Sdump(actual) } diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{ A: difflib.SplitLines(e), B: difflib.SplitLines(a), FromFile: "Expected", FromDate: "", ToFile: "Actual", ToDate: "", Context: 1, }) return "\n\nDiff:\n" + diff } func isFunction(arg interface{}) bool { if arg == nil { return false } return reflect.TypeOf(arg).Kind() == reflect.Func } var spewConfig = spew.ConfigState{ Indent: " ", DisablePointerAddresses: true, DisableCapacities: true, SortKeys: true, DisableMethods: true, MaxDepth: 10, } var spewConfigStringerEnabled = spew.ConfigState{ Indent: " ", DisablePointerAddresses: true, DisableCapacities: true, SortKeys: true, MaxDepth: 10, } type tHelper = interface { Helper() } // Eventually asserts that given condition will be met in waitFor time, // periodically checking target function each tick. // // assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond) func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } ch := make(chan bool, 1) timer := time.NewTimer(waitFor) defer timer.Stop() ticker := time.NewTicker(tick) defer ticker.Stop() for tick := ticker.C; ; { select { case <-timer.C: return Fail(t, "Condition never satisfied", msgAndArgs...) case <-tick: tick = nil go func() { ch <- condition() }() case v := <-ch: if v { return true } tick = ticker.C } } } // CollectT implements the TestingT interface and collects all errors. type CollectT struct { // A slice of errors. Non-nil slice denotes a failure. // If it's non-nil but len(c.errors) == 0, this is also a failure // obtained by direct c.FailNow() call. errors []error } // Errorf collects the error. func (c *CollectT) Errorf(format string, args ...interface{}) { c.errors = append(c.errors, fmt.Errorf(format, args...)) } // FailNow stops execution by calling runtime.Goexit. func (c *CollectT) FailNow() { c.fail() runtime.Goexit() } // Deprecated: That was a method for internal usage that should not have been published. Now just panics. func (*CollectT) Reset() { panic("Reset() is deprecated") } // Deprecated: That was a method for internal usage that should not have been published. Now just panics. func (*CollectT) Copy(TestingT) { panic("Copy() is deprecated") } func (c *CollectT) fail() { if !c.failed() { c.errors = []error{} // Make it non-nil to mark a failure. } } func (c *CollectT) failed() bool { return c.errors != nil } // EventuallyWithT asserts that given condition will be met in waitFor time, // periodically checking target function each tick. In contrast to Eventually, // it supplies a CollectT to the condition function, so that the condition // function can use the CollectT to call other assertions. // The condition is considered "met" if no errors are raised in a tick. // The supplied CollectT collects all errors from one tick (if there are any). // If the condition is not met before waitFor, the collected errors of // the last tick are copied to t. // // externalValue := false // go func() { // time.Sleep(8*time.Second) // externalValue = true // }() // assert.EventuallyWithT(t, func(c *assert.CollectT) { // // add assertions as needed; any assertion failure will fail the current tick // assert.True(c, externalValue, "expected 'externalValue' to be true") // }, 10*time.Second, 1*time.Second, "external state has not changed to 'true'; still false") func EventuallyWithT(t TestingT, condition func(collect *CollectT), waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } var lastFinishedTickErrs []error ch := make(chan *CollectT, 1) timer := time.NewTimer(waitFor) defer timer.Stop() ticker := time.NewTicker(tick) defer ticker.Stop() for tick := ticker.C; ; { select { case <-timer.C: for _, err := range lastFinishedTickErrs { t.Errorf("%v", err) } return Fail(t, "Condition never satisfied", msgAndArgs...) case <-tick: tick = nil go func() { collect := new(CollectT) defer func() { ch <- collect }() condition(collect) }() case collect := <-ch: if !collect.failed() { return true } // Keep the errors from the last ended condition, so that they can be copied to t if timeout is reached. lastFinishedTickErrs = collect.errors tick = ticker.C } } } // Never asserts that the given condition doesn't satisfy in waitFor time, // periodically checking the target function each tick. // // assert.Never(t, func() bool { return false; }, time.Second, 10*time.Millisecond) func Never(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } ch := make(chan bool, 1) timer := time.NewTimer(waitFor) defer timer.Stop() ticker := time.NewTicker(tick) defer ticker.Stop() for tick := ticker.C; ; { select { case <-timer.C: return true case <-tick: tick = nil go func() { ch <- condition() }() case v := <-ch: if v { return Fail(t, "Condition satisfied", msgAndArgs...) } tick = ticker.C } } } // ErrorIs asserts that at least one of the errors in err's chain matches target. // This is a wrapper for errors.Is. func ErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if errors.Is(err, target) { return true } var expectedText string if target != nil { expectedText = target.Error() } chain := buildErrorChainString(err) return Fail(t, fmt.Sprintf("Target error should be in err chain:\n"+ "expected: %q\n"+ "in chain: %s", expectedText, chain, ), msgAndArgs...) } // NotErrorIs asserts that none of the errors in err's chain matches target. // This is a wrapper for errors.Is. func NotErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !errors.Is(err, target) { return true } var expectedText string if target != nil { expectedText = target.Error() } chain := buildErrorChainString(err) return Fail(t, fmt.Sprintf("Target error should not be in err chain:\n"+ "found: %q\n"+ "in chain: %s", expectedText, chain, ), msgAndArgs...) } // ErrorAs asserts that at least one of the errors in err's chain matches target, and if so, sets target to that error value. // This is a wrapper for errors.As. func ErrorAs(t TestingT, err error, target interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if errors.As(err, target) { return true } chain := buildErrorChainString(err) return Fail(t, fmt.Sprintf("Should be in error chain:\n"+ "expected: %q\n"+ "in chain: %s", target, chain, ), msgAndArgs...) } // NotErrorAs asserts that none of the errors in err's chain matches target, // but if so, sets target to that error value. func NotErrorAs(t TestingT, err error, target interface{}, msgAndArgs ...interface{}) bool { if h, ok := t.(tHelper); ok { h.Helper() } if !errors.As(err, target) { return true } chain := buildErrorChainString(err) return Fail(t, fmt.Sprintf("Target error should not be in err chain:\n"+ "found: %q\n"+ "in chain: %s", target, chain, ), msgAndArgs...) } func buildErrorChainString(err error) string { if err == nil { return "" } e := errors.Unwrap(err) chain := fmt.Sprintf("%q", err.Error()) for e != nil { chain += fmt.Sprintf("\n\t%q", e.Error()) e = errors.Unwrap(e) } return chain }