package result import ( "context" "reflect" "time" _ "unsafe" "codeberg.org/gruf/go-cache/v3/ttl" "codeberg.org/gruf/go-errors/v2" ) // Lookup represents a struct object lookup method in the cache. type Lookup struct { // Name is a period ('.') separated string // of struct fields this Key encompasses. Name string // AllowZero indicates whether to accept and cache // under zero value keys, otherwise ignore them. AllowZero bool // Multi allows specifying a key capable of storing // multiple results. Note this only supports invalidate. Multi bool // TODO: support toggling case sensitive lookups. // CaseSensitive bool } // Cache provides a means of caching value structures, along with // the results of attempting to load them. An example usecase of this // cache would be in wrapping a database, allowing caching of sql.ErrNoRows. type Cache[Value any] struct { cache ttl.Cache[int64, result[Value]] // underlying result cache invalid func(Value) // store unwrapped invalidate callback. lookups structKeys // pre-determined struct lookups ignore func(error) bool // determines cacheable errors copy func(Value) Value // copies a Value type next int64 // update key counter } // New returns a new initialized Cache, with given lookups, underlying value copy function and provided capacity. func New[Value any](lookups []Lookup, copy func(Value) Value, cap int) *Cache[Value] { var z Value // Determine generic type t := reflect.TypeOf(z) // Iteratively deref pointer type for t.Kind() == reflect.Pointer { t = t.Elem() } // Ensure that this is a struct type if t.Kind() != reflect.Struct { panic("generic parameter type must be struct (or ptr to)") } // Allocate new cache object c := &Cache[Value]{copy: copy} c.lookups = make([]structKey, len(lookups)) for i, lookup := range lookups { // Create keyed field info for lookup c.lookups[i] = newStructKey(lookup, t) } // Create and initialize underlying cache c.cache.Init(0, cap, 0) c.SetEvictionCallback(nil) c.SetInvalidateCallback(nil) c.IgnoreErrors(nil) return c } // Start will start the cache background eviction routine with given sweep frequency. If already // running or a freq <= 0 provided, this is a no-op. This will block until eviction routine started. func (c *Cache[Value]) Start(freq time.Duration) bool { return c.cache.Start(freq) } // Stop will stop cache background eviction routine. If not running this // is a no-op. This will block until the eviction routine has stopped. func (c *Cache[Value]) Stop() bool { return c.cache.Stop() } // SetTTL sets the cache item TTL. Update can be specified to force updates of existing items // in the cache, this will simply add the change in TTL to their current expiry time. func (c *Cache[Value]) SetTTL(ttl time.Duration, update bool) { c.cache.SetTTL(ttl, update) } // SetEvictionCallback sets the eviction callback to the provided hook. func (c *Cache[Value]) SetEvictionCallback(hook func(Value)) { if hook == nil { // Ensure non-nil hook. hook = func(Value) {} } c.cache.SetEvictionCallback(func(pkey int64, res result[Value]) { c.cache.Lock() for _, key := range res.Keys { // Delete key->pkey lookup pkeys := key.info.pkeys delete(pkeys, key.key) } c.cache.Unlock() if res.Error != nil { // Skip error hooks return } // Call user hook. hook(res.Value) }) } // SetInvalidateCallback sets the invalidate callback to the provided hook. func (c *Cache[Value]) SetInvalidateCallback(hook func(Value)) { if hook == nil { // Ensure non-nil hook. hook = func(Value) {} } // store hook. c.invalid = hook c.cache.SetInvalidateCallback(func(pkey int64, res result[Value]) { c.cache.Lock() for _, key := range res.Keys { // Delete key->pkey lookup pkeys := key.info.pkeys delete(pkeys, key.key) } c.cache.Unlock() if res.Error != nil { // Skip error hooks return } // Call user hook. hook(res.Value) }) } // IgnoreErrors allows setting a function hook to determine which error types should / not be cached. func (c *Cache[Value]) IgnoreErrors(ignore func(error) bool) { if ignore == nil { ignore = func(err error) bool { return errors.Comparable( err, context.Canceled, context.DeadlineExceeded, ) } } c.cache.Lock() c.ignore = ignore c.cache.Unlock() } // Load will attempt to load an existing result from the cacche for the given lookup and key parts, else calling the provided load function and caching the result. func (c *Cache[Value]) Load(lookup string, load func() (Value, error), keyParts ...any) (Value, error) { var ( zero Value res result[Value] ok bool ) // Get lookup key info by name. keyInfo := c.lookups.get(lookup) if !keyInfo.unique { panic("non-unique lookup does not support load: " + lookup) } // Generate cache key string. ckey := keyInfo.genKey(keyParts) // Acquire cache lock c.cache.Lock() // Look for primary cache key pkeys := keyInfo.pkeys[ckey] if ok = (len(pkeys) > 0); ok { var entry *ttl.Entry[int64, result[Value]] // Fetch the result for primary key entry, ok = c.cache.Cache.Get(pkeys[0]) if ok { // Since the invalidation / eviction hooks acquire a mutex // lock separately, and only at this point are the pkeys // updated, there is a chance that a primary key may return // no matching entry. Hence we have to check for it here. res = entry.Value } } // Done with lock c.cache.Unlock() if !ok { // Generate fresh result. value, err := load() if err != nil { if c.ignore(err) { // don't cache this error type return zero, err } // Store error result. res.Error = err // This load returned an error, only // store this item under provided key. res.Keys = []cacheKey{{ info: keyInfo, key: ckey, }} } else { // Store value result. res.Value = value // This was a successful load, generate keys. res.Keys = c.lookups.generate(res.Value) } var evict func() // Acquire cache lock. c.cache.Lock() defer func() { c.cache.Unlock() if evict != nil { evict() } }() // Store result in cache. evict = c.store(res) } // Catch and return error if res.Error != nil { return zero, res.Error } // Return a copy of value from cache return c.copy(res.Value), nil } // Store will call the given store function, and on success store the value in the cache as a positive result. func (c *Cache[Value]) Store(value Value, store func() error) error { // Attempt to store this value. if err := store(); err != nil { return err } // Prepare cached result. result := result[Value]{ Keys: c.lookups.generate(value), Value: c.copy(value), Error: nil, } var evict func() // Acquire cache lock. c.cache.Lock() defer func() { c.cache.Unlock() if evict != nil { evict() } }() // Store result in cache. evict = c.store(result) // Call invalidate. c.invalid(value) return nil } // Has checks the cache for a positive result under the given lookup and key parts. func (c *Cache[Value]) Has(lookup string, keyParts ...any) bool { var res result[Value] var ok bool // Get lookup key info by name. keyInfo := c.lookups.get(lookup) if !keyInfo.unique { panic("non-unique lookup does not support has: " + lookup) } // Generate cache key string. ckey := keyInfo.genKey(keyParts) // Acquire cache lock c.cache.Lock() // Look for primary key for cache key pkeys := keyInfo.pkeys[ckey] if ok = (len(pkeys) > 0); ok { var entry *ttl.Entry[int64, result[Value]] // Fetch the result for primary key entry, ok = c.cache.Cache.Get(pkeys[0]) if ok { // Since the invalidation / eviction hooks acquire a mutex // lock separately, and only at this point are the pkeys // updated, there is a chance that a primary key may return // no matching entry. Hence we have to check for it here. res = entry.Value } } // Done with lock c.cache.Unlock() // Check for non-error result. return ok && (res.Error == nil) } // Invalidate will invalidate any result from the cache found under given lookup and key parts. func (c *Cache[Value]) Invalidate(lookup string, keyParts ...any) { // Get lookup key info by name. keyInfo := c.lookups.get(lookup) // Generate cache key string. ckey := keyInfo.genKey(keyParts) // Look for primary key for cache key c.cache.Lock() pkeys := keyInfo.pkeys[ckey] delete(keyInfo.pkeys, ckey) c.cache.Unlock() // Invalidate all primary keys. c.cache.InvalidateAll(pkeys...) } // Clear empties the cache, calling the invalidate callback. func (c *Cache[Value]) Clear() { c.cache.Clear() } // store will cache this result under all of its required cache keys. func (c *Cache[Value]) store(res result[Value]) (evict func()) { // Get primary key pnext := c.next c.next++ if pnext > c.next { panic("cache primary key overflow") } for _, key := range res.Keys { // Look for cache primary keys. pkeys := key.info.pkeys[key.key] if key.info.unique && len(pkeys) > 0 { for _, conflict := range pkeys { // Get the overlapping result with this key. entry, _ := c.cache.Cache.Get(conflict) // From conflicting entry, drop this key, this // will prevent eviction cleanup key confusion. entry.Value.Keys.drop(key.info.name) if len(entry.Value.Keys) == 0 { // We just over-wrote the only lookup key for // this value, so we drop its primary key too. c.cache.Cache.Delete(conflict) } } // Drop existing. pkeys = pkeys[:0] } // Store primary key lookup. pkeys = append(pkeys, pnext) key.info.pkeys[key.key] = pkeys } // Store main entry under primary key, using evict hook if needed c.cache.Cache.SetWithHook(pnext, &ttl.Entry[int64, result[Value]]{ Expiry: c.expiry(), Key: pnext, Value: res, }, func(_ int64, item *ttl.Entry[int64, result[Value]]) { evict = func() { c.cache.Evict(item.Key, item.Value) } }) return evict } //go:linkname runtime_nanotime runtime.nanotime func runtime_nanotime() uint64 // expiry returns an the next expiry time to use for an entry, // which is equivalent to time.Now().Add(ttl), or zero if disabled. func (c *Cache[Value]) expiry() uint64 { if ttl := c.cache.TTL; ttl > 0 { return runtime_nanotime() + uint64(c.cache.TTL) } return 0 } type result[Value any] struct { // keys accessible under Keys cacheKeys // cached value Value Value // cached error Error error }