// Copyright 2018 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "math" "github.com/golang/geo/r2" "github.com/golang/geo/s1" ) const ( // MinTessellationTolerance is the minimum supported tolerance (which // corresponds to a distance less than 1 micrometer on the Earth's // surface, but is still much larger than the expected projection and // interpolation errors). MinTessellationTolerance s1.Angle = 1e-13 ) // EdgeTessellator converts an edge in a given projection (e.g., Mercator) into // a chain of spherical geodesic edges such that the maximum distance between // the original edge and the geodesic edge chain is at most the requested // tolerance. Similarly, it can convert a spherical geodesic edge into a chain // of edges in a given 2D projection such that the maximum distance between the // geodesic edge and the chain of projected edges is at most the requested tolerance. // // Method | Input | Output // ------------|------------------------|----------------------- // Projected | S2 geodesics | Planar projected edges // Unprojected | Planar projected edges | S2 geodesics type EdgeTessellator struct { projection Projection tolerance s1.ChordAngle wrapDistance r2.Point } // NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance. func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator { return &EdgeTessellator{ projection: p, tolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, MinTessellationTolerance)), wrapDistance: p.WrapDistance(), } } // AppendProjected converts the spherical geodesic edge AB to a chain of planar edges // in the given projection and returns the corresponding vertices. // // If the given projection has one or more coordinate axes that wrap, then // every vertex's coordinates will be as close as possible to the previous // vertex's coordinates. Note that this may yield vertices whose // coordinates are outside the usual range. For example, tessellating the // edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190). func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point { pa := e.projection.Project(a) if len(vertices) == 0 { vertices = []r2.Point{pa} } else { pa = e.wrapDestination(vertices[len(vertices)-1], pa) } pb := e.wrapDestination(pa, e.projection.Project(b)) return e.appendProjected(pa, a, pb, b, vertices) } // appendProjected splits a geodesic edge AB as necessary and returns the // projected vertices appended to the given vertices. // // The maximum recursion depth is (math.Pi / MinTessellationTolerance) < 45 func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []r2.Point) []r2.Point { // It's impossible to robustly test whether a projected edge is close enough // to a geodesic edge without knowing the details of the projection // function, but the following heuristic works well for a wide range of map // projections. The idea is simply to test whether the midpoint of the // projected edge is close enough to the midpoint of the geodesic edge. // // This measures the distance between the two edges by treating them as // parametric curves rather than geometric ones. The problem with // measuring, say, the minimum distance from the projected midpoint to the // geodesic edge is that this is a lower bound on the value we want, because // the maximum separation between the two curves is generally not attained // at the midpoint of the projected edge. The distance between the curve // midpoints is at least an upper bound on the distance from either midpoint // to opposite curve. It's not necessarily an upper bound on the maximum // distance between the two curves, but it is a powerful requirement because // it demands that the two curves stay parametrically close together. This // turns out to be much more robust with respect for projections with // singularities (e.g., the North and South poles in the rectangular and // Mercator projections) because the curve parameterization speed changes // rapidly near such singularities. mid := Point{a.Add(b.Vector).Normalize()} testMid := e.projection.Unproject(e.projection.Interpolate(0.5, pa, pb)) if ChordAngleBetweenPoints(mid, testMid) < e.tolerance { return append(vertices, pb) } pmid := e.wrapDestination(pa, e.projection.Project(mid)) vertices = e.appendProjected(pa, a, pmid, mid, vertices) return e.appendProjected(pmid, mid, pb, b, vertices) } // AppendUnprojected converts the planar edge AB in the given projection to a chain of // spherical geodesic edges and returns the vertices. // // Note that to construct a Loop, you must eliminate the duplicate first and last // vertex. Note also that if the given projection involves coordinate wrapping // (e.g. across the 180 degree meridian) then the first and last vertices may not // be exactly the same. func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point { pb2 := e.wrapDestination(pa, pb) a := e.projection.Unproject(pa) b := e.projection.Unproject(pb) if len(vertices) == 0 { vertices = []Point{a} } // Note that coordinate wrapping can create a small amount of error. For // example in the edge chain "0:-175, 0:179, 0:-177", the first edge is // transformed into "0:-175, 0:-181" while the second is transformed into // "0:179, 0:183". The two coordinate pairs for the middle vertex // ("0:-181" and "0:179") may not yield exactly the same S2Point. return e.appendUnprojected(pa, a, pb2, b, vertices) } // appendUnprojected interpolates a projected edge and appends the corresponding // points on the sphere. func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []Point) []Point { pmid := e.projection.Interpolate(0.5, pa, pb) mid := e.projection.Unproject(pmid) testMid := Point{a.Add(b.Vector).Normalize()} if ChordAngleBetweenPoints(mid, testMid) < e.tolerance { return append(vertices, b) } vertices = e.appendUnprojected(pa, a, pmid, mid, vertices) return e.appendUnprojected(pmid, mid, pb, b, vertices) } // wrapDestination returns the coordinates of the edge destination wrapped if // necessary to obtain the shortest edge. func (e *EdgeTessellator) wrapDestination(pa, pb r2.Point) r2.Point { x := pb.X y := pb.Y // The code below ensures that pb is unmodified unless wrapping is required. if e.wrapDistance.X > 0 && math.Abs(x-pa.X) > 0.5*e.wrapDistance.X { x = pa.X + math.Remainder(x-pa.X, e.wrapDistance.X) } if e.wrapDistance.Y > 0 && math.Abs(y-pa.Y) > 0.5*e.wrapDistance.Y { y = pa.Y + math.Remainder(y-pa.Y, e.wrapDistance.Y) } return r2.Point{x, y} }