// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "io" "math" "github.com/golang/geo/r1" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // Rect represents a closed latitude-longitude rectangle. type Rect struct { Lat r1.Interval Lng s1.Interval } var ( validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2} validRectLngRange = s1.FullInterval() ) // EmptyRect returns the empty rectangle. func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} } // FullRect returns the full rectangle. func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} } // RectFromLatLng constructs a rectangle containing a single point p. func RectFromLatLng(p LatLng) Rect { return Rect{ Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()}, Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()}, } } // RectFromCenterSize constructs a rectangle with the given size and center. // center needs to be normalized, but size does not. The latitude // interval of the result is clamped to [-90,90] degrees, and the longitude // interval of the result is FullRect() if and only if the longitude size is // 360 degrees or more. // // Examples of clamping (in degrees): // center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160] // center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180] // center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155] func RectFromCenterSize(center, size LatLng) Rect { half := LatLng{size.Lat / 2, size.Lng / 2} return RectFromLatLng(center).expanded(half) } // IsValid returns true iff the rectangle is valid. // This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅ func (r Rect) IsValid() bool { return math.Abs(r.Lat.Lo) <= math.Pi/2 && math.Abs(r.Lat.Hi) <= math.Pi/2 && r.Lng.IsValid() && r.Lat.IsEmpty() == r.Lng.IsEmpty() } // IsEmpty reports whether the rectangle is empty. func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() } // IsFull reports whether the rectangle is full. func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() } // IsPoint reports whether the rectangle is a single point. func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi } // Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order // (lower left, lower right, upper right, upper left). func (r Rect) Vertex(i int) LatLng { var lat, lng float64 switch i { case 0: lat = r.Lat.Lo lng = r.Lng.Lo case 1: lat = r.Lat.Lo lng = r.Lng.Hi case 2: lat = r.Lat.Hi lng = r.Lng.Hi case 3: lat = r.Lat.Hi lng = r.Lng.Lo } return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian} } // Lo returns one corner of the rectangle. func (r Rect) Lo() LatLng { return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian} } // Hi returns the other corner of the rectangle. func (r Rect) Hi() LatLng { return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian} } // Center returns the center of the rectangle. func (r Rect) Center() LatLng { return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian} } // Size returns the size of the Rect. func (r Rect) Size() LatLng { return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian} } // Area returns the surface area of the Rect. func (r Rect) Area() float64 { if r.IsEmpty() { return 0 } capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo)) return r.Lng.Length() * capDiff } // AddPoint increases the size of the rectangle to include the given point. func (r Rect) AddPoint(ll LatLng) Rect { if !ll.IsValid() { return r } return Rect{ Lat: r.Lat.AddPoint(ll.Lat.Radians()), Lng: r.Lng.AddPoint(ll.Lng.Radians()), } } // expanded returns a rectangle that has been expanded by margin.Lat on each side // in the latitude direction, and by margin.Lng on each side in the longitude // direction. If either margin is negative, then it shrinks the rectangle on // the corresponding sides instead. The resulting rectangle may be empty. // // The latitude-longitude space has the topology of a cylinder. Longitudes // "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90]. // This means that any expansion (positive or negative) of the full longitude range // remains full (since the "rectangle" is actually a continuous band around the // cylinder), while expansion of the full latitude range remains full only if the // margin is positive. // // If either the latitude or longitude interval becomes empty after // expansion by a negative margin, the result is empty. // // Note that if an expanded rectangle contains a pole, it may not contain // all possible lat/lng representations of that pole, e.g., both points [π/2,0] // and [π/2,1] represent the same pole, but they might not be contained by the // same Rect. // // If you are trying to grow a rectangle by a certain distance on the // sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation // instead. func (r Rect) expanded(margin LatLng) Rect { lat := r.Lat.Expanded(margin.Lat.Radians()) lng := r.Lng.Expanded(margin.Lng.Radians()) if lat.IsEmpty() || lng.IsEmpty() { return EmptyRect() } return Rect{ Lat: lat.Intersection(validRectLatRange), Lng: lng, } } func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) } // PolarClosure returns the rectangle unmodified if it does not include either pole. // If it includes either pole, PolarClosure returns an expansion of the rectangle along // the longitudinal range to include all possible representations of the contained poles. func (r Rect) PolarClosure() Rect { if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 { return Rect{r.Lat, s1.FullInterval()} } return r } // Union returns the smallest Rect containing the union of this rectangle and the given rectangle. func (r Rect) Union(other Rect) Rect { return Rect{ Lat: r.Lat.Union(other.Lat), Lng: r.Lng.Union(other.Lng), } } // Intersection returns the smallest rectangle containing the intersection of // this rectangle and the given rectangle. Note that the region of intersection // may consist of two disjoint rectangles, in which case a single rectangle // spanning both of them is returned. func (r Rect) Intersection(other Rect) Rect { lat := r.Lat.Intersection(other.Lat) lng := r.Lng.Intersection(other.Lng) if lat.IsEmpty() || lng.IsEmpty() { return EmptyRect() } return Rect{lat, lng} } // Intersects reports whether this rectangle and the other have any points in common. func (r Rect) Intersects(other Rect) bool { return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng) } // CapBound returns a cap that contains Rect. func (r Rect) CapBound() Cap { // We consider two possible bounding caps, one whose axis passes // through the center of the lat-long rectangle and one whose axis // is the north or south pole. We return the smaller of the two caps. if r.IsEmpty() { return EmptyCap() } var poleZ, poleAngle float64 if r.Lat.Hi+r.Lat.Lo < 0 { // South pole axis yields smaller cap. poleZ = -1 poleAngle = math.Pi/2 + r.Lat.Hi } else { poleZ = 1 poleAngle = math.Pi/2 - r.Lat.Lo } poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian) // For bounding rectangles that span 180 degrees or less in longitude, the // maximum cap size is achieved at one of the rectangle vertices. For // rectangles that are larger than 180 degrees, we punt and always return a // bounding cap centered at one of the two poles. if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi { midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi())) if midCap.Height() < poleCap.Height() { return midCap } } return poleCap } // RectBound returns itself. func (r Rect) RectBound() Rect { return r } // Contains reports whether this Rect contains the other Rect. func (r Rect) Contains(other Rect) bool { return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng) } // ContainsCell reports whether the given Cell is contained by this Rect. func (r Rect) ContainsCell(c Cell) bool { // A latitude-longitude rectangle contains a cell if and only if it contains // the cell's bounding rectangle. This test is exact from a mathematical // point of view, assuming that the bounds returned by Cell.RectBound() // are tight. However, note that there can be a loss of precision when // converting between representations -- for example, if an s2.Cell is // converted to a polygon, the polygon's bounding rectangle may not contain // the cell's bounding rectangle. This has some slightly unexpected side // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the // polygon will contain the cell, but the polygon's bounding box will not. return r.Contains(c.RectBound()) } // ContainsLatLng reports whether the given LatLng is within the Rect. func (r Rect) ContainsLatLng(ll LatLng) bool { if !ll.IsValid() { return false } return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians()) } // ContainsPoint reports whether the given Point is within the Rect. func (r Rect) ContainsPoint(p Point) bool { return r.ContainsLatLng(LatLngFromPoint(p)) } // CellUnionBound computes a covering of the Rect. func (r Rect) CellUnionBound() []CellID { return r.CapBound().CellUnionBound() } // intersectsLatEdge reports whether the edge AB intersects the given edge of constant // latitude. Requires the points to have unit length. func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool { // Unfortunately, lines of constant latitude are curves on // the sphere. They can intersect a straight edge in 0, 1, or 2 points. // First, compute the normal to the plane AB that points vaguely north. z := Point{a.PointCross(b).Normalize()} if z.Z < 0 { z = Point{z.Mul(-1)} } // Extend this to an orthonormal frame (x,y,z) where x is the direction // where the great circle through AB achieves its maximium latitude. y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()} x := y.Cross(z.Vector) // Compute the angle "theta" from the x-axis (in the x-y plane defined // above) where the great circle intersects the given line of latitude. sinLat := math.Sin(float64(lat)) if math.Abs(sinLat) >= x.Z { // The great circle does not reach the given latitude. return false } cosTheta := sinLat / x.Z sinTheta := math.Sqrt(1 - cosTheta*cosTheta) theta := math.Atan2(sinTheta, cosTheta) // The candidate intersection points are located +/- theta in the x-y // plane. For an intersection to be valid, we need to check that the // intersection point is contained in the interior of the edge AB and // also that it is contained within the given longitude interval "lng". // Compute the range of theta values spanned by the edge AB. abTheta := s1.IntervalFromPointPair( math.Atan2(a.Dot(y.Vector), a.Dot(x)), math.Atan2(b.Dot(y.Vector), b.Dot(x))) if abTheta.Contains(theta) { // Check if the intersection point is also in the given lng interval. isect := x.Mul(cosTheta).Add(y.Mul(sinTheta)) if lng.Contains(math.Atan2(isect.Y, isect.X)) { return true } } if abTheta.Contains(-theta) { // Check if the other intersection point is also in the given lng interval. isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta)) if lng.Contains(math.Atan2(isect.Y, isect.X)) { return true } } return false } // intersectsLngEdge reports whether the edge AB intersects the given edge of constant // longitude. Requires the points to have unit length. func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool { // The nice thing about edges of constant longitude is that // they are straight lines on the sphere (geodesics). return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}), PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross } // IntersectsCell reports whether this rectangle intersects the given cell. This is an // exact test and may be fairly expensive. func (r Rect) IntersectsCell(c Cell) bool { // First we eliminate the cases where one region completely contains the // other. Once these are disposed of, then the regions will intersect // if and only if their boundaries intersect. if r.IsEmpty() { return false } if r.ContainsPoint(Point{c.id.rawPoint()}) { return true } if c.ContainsPoint(PointFromLatLng(r.Center())) { return true } // Quick rejection test (not required for correctness). if !r.Intersects(c.RectBound()) { return false } // Precompute the cell vertices as points and latitude-longitudes. We also // check whether the Cell contains any corner of the rectangle, or // vice-versa, since the edge-crossing tests only check the edge interiors. vertices := [4]Point{} latlngs := [4]LatLng{} for i := range vertices { vertices[i] = c.Vertex(i) latlngs[i] = LatLngFromPoint(vertices[i]) if r.ContainsLatLng(latlngs[i]) { return true } if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) { return true } } // Now check whether the boundaries intersect. Unfortunately, a // latitude-longitude rectangle does not have straight edges: two edges // are curved, and at least one of them is concave. for i := range vertices { edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians()) if !r.Lng.Intersects(edgeLng) { continue } a := vertices[i] b := vertices[(i+1)&3] if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) { return true } if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) { return true } if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) { return true } if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) { return true } } return false } // Encode encodes the Rect. func (r Rect) Encode(w io.Writer) error { e := &encoder{w: w} r.encode(e) return e.err } func (r Rect) encode(e *encoder) { e.writeInt8(encodingVersion) e.writeFloat64(r.Lat.Lo) e.writeFloat64(r.Lat.Hi) e.writeFloat64(r.Lng.Lo) e.writeFloat64(r.Lng.Hi) } // Decode decodes a rectangle. func (r *Rect) Decode(rd io.Reader) error { d := &decoder{r: asByteReader(rd)} r.decode(d) return d.err } func (r *Rect) decode(d *decoder) { if version := d.readUint8(); int8(version) != encodingVersion && d.err == nil { d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion) return } r.Lat.Lo = d.readFloat64() r.Lat.Hi = d.readFloat64() r.Lng.Lo = d.readFloat64() r.Lng.Hi = d.readFloat64() return } // DistanceToLatLng returns the minimum distance (measured along the surface of the sphere) // from a given point to the rectangle (both its boundary and its interior). // If r is empty, the result is meaningless. // The latlng must be valid. func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle { if r.Lng.Contains(float64(ll.Lng)) { return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat) } i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter()) rectLng := r.Lng.Lo if i.Contains(float64(ll.Lng)) { rectLng = r.Lng.Hi } lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian} hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian} return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi)) } // DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the // surface of the sphere) to the given Rect. The directed Hausdorff // distance from rectangle A to rectangle B is given by // h(A, B) = max_{p in A} min_{q in B} d(p, q). func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle { if r.IsEmpty() { return 0 * s1.Radian } if other.IsEmpty() { return math.Pi * s1.Radian } lng := r.Lng.DirectedHausdorffDistance(other.Lng) return directedHausdorffDistance(lng, r.Lat, other.Lat) } // HausdorffDistance returns the undirected Hausdorff distance (measured along the // surface of the sphere) to the given Rect. // The Hausdorff distance between rectangle A and rectangle B is given by // H(A, B) = max{h(A, B), h(B, A)}. func (r Rect) HausdorffDistance(other Rect) s1.Angle { return maxAngle(r.DirectedHausdorffDistance(other), other.DirectedHausdorffDistance(r)) } // ApproxEqual reports whether the latitude and longitude intervals of the two rectangles // are the same up to a small tolerance. func (r Rect) ApproxEqual(other Rect) bool { return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng) } // directedHausdorffDistance returns the directed Hausdorff distance // from one longitudinal edge spanning latitude range 'a' to the other // longitudinal edge spanning latitude range 'b', with their longitudinal // difference given by 'lngDiff'. func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle { // By symmetry, we can assume a's longitude is 0 and b's longitude is // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere // containing a and delimited by the longitude line of b. The Voronoi diagram // of b on H has three edges (portions of great circles) all orthogonal to b // and meeting at bLo cross bHi. // E1: (bLo, bLo cross bHi) // E2: (bHi, bLo cross bHi) // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b // // They subdivide H into three Voronoi regions. Depending on how longitude 0 // (which contains edge a) intersects these regions, we distinguish two cases: // Case 1: it intersects three regions. This occurs when lngDiff <= π/2. // Case 2: it intersects only two regions. This occurs when lngDiff > π/2. // // In the first case, the directed Hausdorff distance to edge b can only be // realized by the following points on a: // A1: two endpoints of a. // A2: intersection of a with the equator, if b also intersects the equator. // // In the second case, the directed Hausdorff distance to edge b can only be // realized by the following points on a: // B1: two endpoints of a. // B2: intersection of a with E3 // B3: farthest point from bLo to the interior of D, and farthest point from // bHi to the interior of U, if any, where D (resp. U) is the portion // of edge a below (resp. above) the intersection point from B2. if lngDiff < 0 { panic("impossible: negative lngDiff") } if lngDiff > math.Pi { panic("impossible: lngDiff > Pi") } if lngDiff == 0 { return s1.Angle(a.DirectedHausdorffDistance(b)) } // Assumed longitude of b. bLng := lngDiff // Two endpoints of b. bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng}) bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng}) // Cases A1 and B1. aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0}) aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0}) maxDistance := maxAngle( DistanceFromSegment(aLo, bLo, bHi), DistanceFromSegment(aHi, bLo, bHi)) if lngDiff <= math.Pi/2 { // Case A2. if a.Contains(0) && b.Contains(0) { maxDistance = maxAngle(maxDistance, lngDiff) } return maxDistance } // Case B2. p := bisectorIntersection(b, bLng) pLat := LatLngFromPoint(p).Lat if a.Contains(float64(pLat)) { maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector)) } // Case B3. if pLat > s1.Angle(a.Lo) { intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo) if ok { maxDistance = maxAngle(maxDistance, intDist) } } if pLat < s1.Angle(a.Hi) { intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi) if ok { maxDistance = maxAngle(maxDistance, intDist) } } return maxDistance } // interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range // aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false). func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) { // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum // does not occur in the interior of aLat. if aLat.IsEmpty() || b.X >= 0 { return 0, false } // Project b to the y=0 plane. The antipodal of the normalized projection is // the point at which the maxium distance from b occurs, if it is contained // in aLat. intersectionPoint := PointFromCoords(-b.X, 0, -b.Z) if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) { return 0, false } return b.Angle(intersectionPoint.Vector), true } // bisectorIntersection return the intersection of longitude 0 with the bisector of an edge // on longitude 'lng' and spanning latitude range 'lat'. func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point { lng = s1.Angle(math.Abs(float64(lng))) latCenter := s1.Angle(lat.Center()) // A vector orthogonal to the bisector of the given longitudinal edge. orthoBisector := LatLng{latCenter - math.Pi/2, lng} if latCenter < 0 { orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi} } // A vector orthogonal to longitude 0. orthoLng := Point{r3.Vector{0, -1, 0}} return orthoLng.PointCross(PointFromLatLng(orthoBisector)) } // Centroid returns the true centroid of the given Rect multiplied by its // surface area. The result is not unit length, so you may want to normalize it. // Note that in general the centroid is *not* at the center of the rectangle, and // in fact it may not even be contained by the rectangle. (It is the "center of // mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the // point in space about which this curved shape would rotate.) // // The reason for multiplying the result by the rectangle area is to make it // easier to compute the centroid of more complicated shapes. The centroid // of a union of disjoint regions can be computed simply by adding their // Centroid results. func (r Rect) Centroid() Point { // When a sphere is divided into slices of constant thickness by a set // of parallel planes, all slices have the same surface area. This // implies that the z-component of the centroid is simply the midpoint // of the z-interval spanned by the Rect. // // Similarly, it is easy to see that the (x,y) of the centroid lies in // the plane through the midpoint of the rectangle's longitude interval. // We only need to determine the distance "d" of this point from the // z-axis. // // Let's restrict our attention to a particular z-value. In this // z-plane, the Rect is a circular arc. The centroid of this arc // lies on a radial line through the midpoint of the arc, and at a // distance from the z-axis of // // r * (sin(alpha) / alpha) // // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]). // // To find the centroid distance from the z-axis for the entire // rectangle, we just need to integrate over the z-interval. This gives // // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1) // // where [z1, z2] is the range of z-values covered by the rectangle. // This simplifies to // // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1) // // where [theta1, theta2] is the latitude interval, z1=sin(theta1), // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2). // // Finally, we want to return not the centroid itself, but the centroid // scaled by the area of the rectangle. The area of the rectangle is // // A = 2 * alpha * (z2 - z1) // // which fortunately appears in the denominator of "d". if r.IsEmpty() { return Point{} } z1 := math.Sin(r.Lat.Lo) z2 := math.Sin(r.Lat.Hi) r1 := math.Cos(r.Lat.Lo) r2 := math.Cos(r.Lat.Hi) alpha := 0.5 * r.Lng.Length() r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length()) lng := r.Lng.Center() z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}} } // BUG: The major differences from the C++ version are: // - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point)