// Copyright 2011 The Snappy-Go Authors. All rights reserved. // Copyright (c) 2019 Klaus Post. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package s2 import ( "encoding/binary" "errors" "fmt" "io" "io/ioutil" "math" "runtime" "strconv" "sync" ) var ( // ErrCorrupt reports that the input is invalid. ErrCorrupt = errors.New("s2: corrupt input") // ErrCRC reports that the input failed CRC validation (streams only) ErrCRC = errors.New("s2: corrupt input, crc mismatch") // ErrTooLarge reports that the uncompressed length is too large. ErrTooLarge = errors.New("s2: decoded block is too large") // ErrUnsupported reports that the input isn't supported. ErrUnsupported = errors.New("s2: unsupported input") ) // ErrCantSeek is returned if the stream cannot be seeked. type ErrCantSeek struct { Reason string } // Error returns the error as string. func (e ErrCantSeek) Error() string { return fmt.Sprintf("s2: Can't seek because %s", e.Reason) } // DecodedLen returns the length of the decoded block. func DecodedLen(src []byte) (int, error) { v, _, err := decodedLen(src) return v, err } // decodedLen returns the length of the decoded block and the number of bytes // that the length header occupied. func decodedLen(src []byte) (blockLen, headerLen int, err error) { v, n := binary.Uvarint(src) if n <= 0 || v > 0xffffffff { return 0, 0, ErrCorrupt } const wordSize = 32 << (^uint(0) >> 32 & 1) if wordSize == 32 && v > 0x7fffffff { return 0, 0, ErrTooLarge } return int(v), n, nil } const ( decodeErrCodeCorrupt = 1 ) // Decode returns the decoded form of src. The returned slice may be a sub- // slice of dst if dst was large enough to hold the entire decoded block. // Otherwise, a newly allocated slice will be returned. // // The dst and src must not overlap. It is valid to pass a nil dst. func Decode(dst, src []byte) ([]byte, error) { dLen, s, err := decodedLen(src) if err != nil { return nil, err } if dLen <= cap(dst) { dst = dst[:dLen] } else { dst = make([]byte, dLen) } if s2Decode(dst, src[s:]) != 0 { return nil, ErrCorrupt } return dst, nil } // NewReader returns a new Reader that decompresses from r, using the framing // format described at // https://github.com/google/snappy/blob/master/framing_format.txt with S2 changes. func NewReader(r io.Reader, opts ...ReaderOption) *Reader { nr := Reader{ r: r, maxBlock: maxBlockSize, } for _, opt := range opts { if err := opt(&nr); err != nil { nr.err = err return &nr } } nr.maxBufSize = MaxEncodedLen(nr.maxBlock) + checksumSize if nr.lazyBuf > 0 { nr.buf = make([]byte, MaxEncodedLen(nr.lazyBuf)+checksumSize) } else { nr.buf = make([]byte, MaxEncodedLen(defaultBlockSize)+checksumSize) } nr.readHeader = nr.ignoreStreamID nr.paramsOK = true return &nr } // ReaderOption is an option for creating a decoder. type ReaderOption func(*Reader) error // ReaderMaxBlockSize allows to control allocations if the stream // has been compressed with a smaller WriterBlockSize, or with the default 1MB. // Blocks must be this size or smaller to decompress, // otherwise the decoder will return ErrUnsupported. // // For streams compressed with Snappy this can safely be set to 64KB (64 << 10). // // Default is the maximum limit of 4MB. func ReaderMaxBlockSize(blockSize int) ReaderOption { return func(r *Reader) error { if blockSize > maxBlockSize || blockSize <= 0 { return errors.New("s2: block size too large. Must be <= 4MB and > 0") } if r.lazyBuf == 0 && blockSize < defaultBlockSize { r.lazyBuf = blockSize } r.maxBlock = blockSize return nil } } // ReaderAllocBlock allows to control upfront stream allocations // and not allocate for frames bigger than this initially. // If frames bigger than this is seen a bigger buffer will be allocated. // // Default is 1MB, which is default output size. func ReaderAllocBlock(blockSize int) ReaderOption { return func(r *Reader) error { if blockSize > maxBlockSize || blockSize < 1024 { return errors.New("s2: invalid ReaderAllocBlock. Must be <= 4MB and >= 1024") } r.lazyBuf = blockSize return nil } } // ReaderIgnoreStreamIdentifier will make the reader skip the expected // stream identifier at the beginning of the stream. // This can be used when serving a stream that has been forwarded to a specific point. func ReaderIgnoreStreamIdentifier() ReaderOption { return func(r *Reader) error { r.ignoreStreamID = true return nil } } // ReaderSkippableCB will register a callback for chuncks with the specified ID. // ID must be a Reserved skippable chunks ID, 0x80-0xfd (inclusive). // For each chunk with the ID, the callback is called with the content. // Any returned non-nil error will abort decompression. // Only one callback per ID is supported, latest sent will be used. func ReaderSkippableCB(id uint8, fn func(r io.Reader) error) ReaderOption { return func(r *Reader) error { if id < 0x80 || id > 0xfd { return fmt.Errorf("ReaderSkippableCB: Invalid id provided, must be 0x80-0xfd (inclusive)") } r.skippableCB[id] = fn return nil } } // ReaderIgnoreCRC will make the reader skip CRC calculation and checks. func ReaderIgnoreCRC() ReaderOption { return func(r *Reader) error { r.ignoreCRC = true return nil } } // Reader is an io.Reader that can read Snappy-compressed bytes. type Reader struct { r io.Reader err error decoded []byte buf []byte skippableCB [0x80]func(r io.Reader) error blockStart int64 // Uncompressed offset at start of current. index *Index // decoded[i:j] contains decoded bytes that have not yet been passed on. i, j int // maximum block size allowed. maxBlock int // maximum expected buffer size. maxBufSize int // alloc a buffer this size if > 0. lazyBuf int readHeader bool paramsOK bool snappyFrame bool ignoreStreamID bool ignoreCRC bool } // ensureBufferSize will ensure that the buffer can take at least n bytes. // If false is returned the buffer exceeds maximum allowed size. func (r *Reader) ensureBufferSize(n int) bool { if n > r.maxBufSize { r.err = ErrCorrupt return false } if cap(r.buf) >= n { return true } // Realloc buffer. r.buf = make([]byte, n) return true } // Reset discards any buffered data, resets all state, and switches the Snappy // reader to read from r. This permits reusing a Reader rather than allocating // a new one. func (r *Reader) Reset(reader io.Reader) { if !r.paramsOK { return } r.index = nil r.r = reader r.err = nil r.i = 0 r.j = 0 r.blockStart = 0 r.readHeader = r.ignoreStreamID } func (r *Reader) readFull(p []byte, allowEOF bool) (ok bool) { if _, r.err = io.ReadFull(r.r, p); r.err != nil { if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) { r.err = ErrCorrupt } return false } return true } // skippable will skip n bytes. // If the supplied reader supports seeking that is used. // tmp is used as a temporary buffer for reading. // The supplied slice does not need to be the size of the read. func (r *Reader) skippable(tmp []byte, n int, allowEOF bool, id uint8) (ok bool) { if id < 0x80 { r.err = fmt.Errorf("interbal error: skippable id < 0x80") return false } if fn := r.skippableCB[id-0x80]; fn != nil { rd := io.LimitReader(r.r, int64(n)) r.err = fn(rd) if r.err != nil { return false } _, r.err = io.CopyBuffer(ioutil.Discard, rd, tmp) return r.err == nil } if rs, ok := r.r.(io.ReadSeeker); ok { _, err := rs.Seek(int64(n), io.SeekCurrent) if err == nil { return true } if err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) { r.err = ErrCorrupt return false } } for n > 0 { if n < len(tmp) { tmp = tmp[:n] } if _, r.err = io.ReadFull(r.r, tmp); r.err != nil { if r.err == io.ErrUnexpectedEOF || (r.err == io.EOF && !allowEOF) { r.err = ErrCorrupt } return false } n -= len(tmp) } return true } // Read satisfies the io.Reader interface. func (r *Reader) Read(p []byte) (int, error) { if r.err != nil { return 0, r.err } for { if r.i < r.j { n := copy(p, r.decoded[r.i:r.j]) r.i += n return n, nil } if !r.readFull(r.buf[:4], true) { return 0, r.err } chunkType := r.buf[0] if !r.readHeader { if chunkType != chunkTypeStreamIdentifier { r.err = ErrCorrupt return 0, r.err } r.readHeader = true } chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16 // The chunk types are specified at // https://github.com/google/snappy/blob/master/framing_format.txt switch chunkType { case chunkTypeCompressedData: r.blockStart += int64(r.j) // Section 4.2. Compressed data (chunk type 0x00). if chunkLen < checksumSize { r.err = ErrCorrupt return 0, r.err } if !r.ensureBufferSize(chunkLen) { if r.err == nil { r.err = ErrUnsupported } return 0, r.err } buf := r.buf[:chunkLen] if !r.readFull(buf, false) { return 0, r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 buf = buf[checksumSize:] n, err := DecodedLen(buf) if err != nil { r.err = err return 0, r.err } if r.snappyFrame && n > maxSnappyBlockSize { r.err = ErrCorrupt return 0, r.err } if n > len(r.decoded) { if n > r.maxBlock { r.err = ErrCorrupt return 0, r.err } r.decoded = make([]byte, n) } if _, err := Decode(r.decoded, buf); err != nil { r.err = err return 0, r.err } if !r.ignoreCRC && crc(r.decoded[:n]) != checksum { r.err = ErrCRC return 0, r.err } r.i, r.j = 0, n continue case chunkTypeUncompressedData: r.blockStart += int64(r.j) // Section 4.3. Uncompressed data (chunk type 0x01). if chunkLen < checksumSize { r.err = ErrCorrupt return 0, r.err } if !r.ensureBufferSize(chunkLen) { if r.err == nil { r.err = ErrUnsupported } return 0, r.err } buf := r.buf[:checksumSize] if !r.readFull(buf, false) { return 0, r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 // Read directly into r.decoded instead of via r.buf. n := chunkLen - checksumSize if r.snappyFrame && n > maxSnappyBlockSize { r.err = ErrCorrupt return 0, r.err } if n > len(r.decoded) { if n > r.maxBlock { r.err = ErrCorrupt return 0, r.err } r.decoded = make([]byte, n) } if !r.readFull(r.decoded[:n], false) { return 0, r.err } if !r.ignoreCRC && crc(r.decoded[:n]) != checksum { r.err = ErrCRC return 0, r.err } r.i, r.j = 0, n continue case chunkTypeStreamIdentifier: // Section 4.1. Stream identifier (chunk type 0xff). if chunkLen != len(magicBody) { r.err = ErrCorrupt return 0, r.err } if !r.readFull(r.buf[:len(magicBody)], false) { return 0, r.err } if string(r.buf[:len(magicBody)]) != magicBody { if string(r.buf[:len(magicBody)]) != magicBodySnappy { r.err = ErrCorrupt return 0, r.err } else { r.snappyFrame = true } } else { r.snappyFrame = false } continue } if chunkType <= 0x7f { // Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f). // fmt.Printf("ERR chunktype: 0x%x\n", chunkType) r.err = ErrUnsupported return 0, r.err } // Section 4.4 Padding (chunk type 0xfe). // Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd). if chunkLen > maxChunkSize { // fmt.Printf("ERR chunkLen: 0x%x\n", chunkLen) r.err = ErrUnsupported return 0, r.err } // fmt.Printf("skippable: ID: 0x%x, len: 0x%x\n", chunkType, chunkLen) if !r.skippable(r.buf, chunkLen, false, chunkType) { return 0, r.err } } } // DecodeConcurrent will decode the full stream to w. // This function should not be combined with reading, seeking or other operations. // Up to 'concurrent' goroutines will be used. // If <= 0, runtime.NumCPU will be used. // On success the number of bytes decompressed nil and is returned. // This is mainly intended for bigger streams. func (r *Reader) DecodeConcurrent(w io.Writer, concurrent int) (written int64, err error) { if r.i > 0 || r.j > 0 || r.blockStart > 0 { return 0, errors.New("DecodeConcurrent called after ") } if concurrent <= 0 { concurrent = runtime.NumCPU() } // Write to output var errMu sync.Mutex var aErr error setErr := func(e error) (ok bool) { errMu.Lock() defer errMu.Unlock() if e == nil { return aErr == nil } if aErr == nil { aErr = e } return false } hasErr := func() (ok bool) { errMu.Lock() v := aErr != nil errMu.Unlock() return v } var aWritten int64 toRead := make(chan []byte, concurrent) writtenBlocks := make(chan []byte, concurrent) queue := make(chan chan []byte, concurrent) reUse := make(chan chan []byte, concurrent) for i := 0; i < concurrent; i++ { toRead <- make([]byte, 0, r.maxBufSize) writtenBlocks <- make([]byte, 0, r.maxBufSize) reUse <- make(chan []byte, 1) } // Writer var wg sync.WaitGroup wg.Add(1) go func() { defer wg.Done() for toWrite := range queue { entry := <-toWrite reUse <- toWrite if hasErr() { writtenBlocks <- entry continue } n, err := w.Write(entry) want := len(entry) writtenBlocks <- entry if err != nil { setErr(err) continue } if n != want { setErr(io.ErrShortWrite) continue } aWritten += int64(n) } }() // Reader defer func() { close(queue) if r.err != nil { err = r.err setErr(r.err) } wg.Wait() if err == nil { err = aErr } written = aWritten }() for !hasErr() { if !r.readFull(r.buf[:4], true) { if r.err == io.EOF { r.err = nil } return 0, r.err } chunkType := r.buf[0] if !r.readHeader { if chunkType != chunkTypeStreamIdentifier { r.err = ErrCorrupt return 0, r.err } r.readHeader = true } chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16 // The chunk types are specified at // https://github.com/google/snappy/blob/master/framing_format.txt switch chunkType { case chunkTypeCompressedData: r.blockStart += int64(r.j) // Section 4.2. Compressed data (chunk type 0x00). if chunkLen < checksumSize { r.err = ErrCorrupt return 0, r.err } if chunkLen > r.maxBufSize { r.err = ErrCorrupt return 0, r.err } orgBuf := <-toRead buf := orgBuf[:chunkLen] if !r.readFull(buf, false) { return 0, r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 buf = buf[checksumSize:] n, err := DecodedLen(buf) if err != nil { r.err = err return 0, r.err } if r.snappyFrame && n > maxSnappyBlockSize { r.err = ErrCorrupt return 0, r.err } if n > r.maxBlock { r.err = ErrCorrupt return 0, r.err } wg.Add(1) decoded := <-writtenBlocks entry := <-reUse queue <- entry go func() { defer wg.Done() decoded = decoded[:n] _, err := Decode(decoded, buf) toRead <- orgBuf if err != nil { writtenBlocks <- decoded setErr(err) return } if !r.ignoreCRC && crc(decoded) != checksum { writtenBlocks <- decoded setErr(ErrCRC) return } entry <- decoded }() continue case chunkTypeUncompressedData: // Section 4.3. Uncompressed data (chunk type 0x01). if chunkLen < checksumSize { r.err = ErrCorrupt return 0, r.err } if chunkLen > r.maxBufSize { r.err = ErrCorrupt return 0, r.err } // Grab write buffer orgBuf := <-writtenBlocks buf := orgBuf[:checksumSize] if !r.readFull(buf, false) { return 0, r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 // Read content. n := chunkLen - checksumSize if r.snappyFrame && n > maxSnappyBlockSize { r.err = ErrCorrupt return 0, r.err } if n > r.maxBlock { r.err = ErrCorrupt return 0, r.err } // Read uncompressed buf = orgBuf[:n] if !r.readFull(buf, false) { return 0, r.err } if !r.ignoreCRC && crc(buf) != checksum { r.err = ErrCRC return 0, r.err } entry := <-reUse queue <- entry entry <- buf continue case chunkTypeStreamIdentifier: // Section 4.1. Stream identifier (chunk type 0xff). if chunkLen != len(magicBody) { r.err = ErrCorrupt return 0, r.err } if !r.readFull(r.buf[:len(magicBody)], false) { return 0, r.err } if string(r.buf[:len(magicBody)]) != magicBody { if string(r.buf[:len(magicBody)]) != magicBodySnappy { r.err = ErrCorrupt return 0, r.err } else { r.snappyFrame = true } } else { r.snappyFrame = false } continue } if chunkType <= 0x7f { // Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f). // fmt.Printf("ERR chunktype: 0x%x\n", chunkType) r.err = ErrUnsupported return 0, r.err } // Section 4.4 Padding (chunk type 0xfe). // Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd). if chunkLen > maxChunkSize { // fmt.Printf("ERR chunkLen: 0x%x\n", chunkLen) r.err = ErrUnsupported return 0, r.err } // fmt.Printf("skippable: ID: 0x%x, len: 0x%x\n", chunkType, chunkLen) if !r.skippable(r.buf, chunkLen, false, chunkType) { return 0, r.err } } return 0, r.err } // Skip will skip n bytes forward in the decompressed output. // For larger skips this consumes less CPU and is faster than reading output and discarding it. // CRC is not checked on skipped blocks. // io.ErrUnexpectedEOF is returned if the stream ends before all bytes have been skipped. // If a decoding error is encountered subsequent calls to Read will also fail. func (r *Reader) Skip(n int64) error { if n < 0 { return errors.New("attempted negative skip") } if r.err != nil { return r.err } for n > 0 { if r.i < r.j { // Skip in buffer. // decoded[i:j] contains decoded bytes that have not yet been passed on. left := int64(r.j - r.i) if left >= n { tmp := int64(r.i) + n if tmp > math.MaxInt32 { return errors.New("s2: internal overflow in skip") } r.i = int(tmp) return nil } n -= int64(r.j - r.i) r.i = r.j } // Buffer empty; read blocks until we have content. if !r.readFull(r.buf[:4], true) { if r.err == io.EOF { r.err = io.ErrUnexpectedEOF } return r.err } chunkType := r.buf[0] if !r.readHeader { if chunkType != chunkTypeStreamIdentifier { r.err = ErrCorrupt return r.err } r.readHeader = true } chunkLen := int(r.buf[1]) | int(r.buf[2])<<8 | int(r.buf[3])<<16 // The chunk types are specified at // https://github.com/google/snappy/blob/master/framing_format.txt switch chunkType { case chunkTypeCompressedData: r.blockStart += int64(r.j) // Section 4.2. Compressed data (chunk type 0x00). if chunkLen < checksumSize { r.err = ErrCorrupt return r.err } if !r.ensureBufferSize(chunkLen) { if r.err == nil { r.err = ErrUnsupported } return r.err } buf := r.buf[:chunkLen] if !r.readFull(buf, false) { return r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 buf = buf[checksumSize:] dLen, err := DecodedLen(buf) if err != nil { r.err = err return r.err } if dLen > r.maxBlock { r.err = ErrCorrupt return r.err } // Check if destination is within this block if int64(dLen) > n { if len(r.decoded) < dLen { r.decoded = make([]byte, dLen) } if _, err := Decode(r.decoded, buf); err != nil { r.err = err return r.err } if crc(r.decoded[:dLen]) != checksum { r.err = ErrCorrupt return r.err } } else { // Skip block completely n -= int64(dLen) r.blockStart += int64(dLen) dLen = 0 } r.i, r.j = 0, dLen continue case chunkTypeUncompressedData: r.blockStart += int64(r.j) // Section 4.3. Uncompressed data (chunk type 0x01). if chunkLen < checksumSize { r.err = ErrCorrupt return r.err } if !r.ensureBufferSize(chunkLen) { if r.err != nil { r.err = ErrUnsupported } return r.err } buf := r.buf[:checksumSize] if !r.readFull(buf, false) { return r.err } checksum := uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24 // Read directly into r.decoded instead of via r.buf. n2 := chunkLen - checksumSize if n2 > len(r.decoded) { if n2 > r.maxBlock { r.err = ErrCorrupt return r.err } r.decoded = make([]byte, n2) } if !r.readFull(r.decoded[:n2], false) { return r.err } if int64(n2) < n { if crc(r.decoded[:n2]) != checksum { r.err = ErrCorrupt return r.err } } r.i, r.j = 0, n2 continue case chunkTypeStreamIdentifier: // Section 4.1. Stream identifier (chunk type 0xff). if chunkLen != len(magicBody) { r.err = ErrCorrupt return r.err } if !r.readFull(r.buf[:len(magicBody)], false) { return r.err } if string(r.buf[:len(magicBody)]) != magicBody { if string(r.buf[:len(magicBody)]) != magicBodySnappy { r.err = ErrCorrupt return r.err } } continue } if chunkType <= 0x7f { // Section 4.5. Reserved unskippable chunks (chunk types 0x02-0x7f). r.err = ErrUnsupported return r.err } if chunkLen > maxChunkSize { r.err = ErrUnsupported return r.err } // Section 4.4 Padding (chunk type 0xfe). // Section 4.6. Reserved skippable chunks (chunk types 0x80-0xfd). if !r.skippable(r.buf, chunkLen, false, chunkType) { return r.err } } return nil } // ReadSeeker provides random or forward seeking in compressed content. // See Reader.ReadSeeker type ReadSeeker struct { *Reader readAtMu sync.Mutex } // ReadSeeker will return an io.ReadSeeker and io.ReaderAt // compatible version of the reader. // If 'random' is specified the returned io.Seeker can be used for // random seeking, otherwise only forward seeking is supported. // Enabling random seeking requires the original input to support // the io.Seeker interface. // A custom index can be specified which will be used if supplied. // When using a custom index, it will not be read from the input stream. // The ReadAt position will affect regular reads and the current position of Seek. // So using Read after ReadAt will continue from where the ReadAt stopped. // No functions should be used concurrently. // The returned ReadSeeker contains a shallow reference to the existing Reader, // meaning changes performed to one is reflected in the other. func (r *Reader) ReadSeeker(random bool, index []byte) (*ReadSeeker, error) { // Read index if provided. if len(index) != 0 { if r.index == nil { r.index = &Index{} } if _, err := r.index.Load(index); err != nil { return nil, ErrCantSeek{Reason: "loading index returned: " + err.Error()} } } // Check if input is seekable rs, ok := r.r.(io.ReadSeeker) if !ok { if !random { return &ReadSeeker{Reader: r}, nil } return nil, ErrCantSeek{Reason: "input stream isn't seekable"} } if r.index != nil { // Seekable and index, ok... return &ReadSeeker{Reader: r}, nil } // Load from stream. r.index = &Index{} // Read current position. pos, err := rs.Seek(0, io.SeekCurrent) if err != nil { return nil, ErrCantSeek{Reason: "seeking input returned: " + err.Error()} } err = r.index.LoadStream(rs) if err != nil { if err == ErrUnsupported { // If we don't require random seeking, reset input and return. if !random { _, err = rs.Seek(pos, io.SeekStart) if err != nil { return nil, ErrCantSeek{Reason: "resetting stream returned: " + err.Error()} } r.index = nil return &ReadSeeker{Reader: r}, nil } return nil, ErrCantSeek{Reason: "input stream does not contain an index"} } return nil, ErrCantSeek{Reason: "reading index returned: " + err.Error()} } // reset position. _, err = rs.Seek(pos, io.SeekStart) if err != nil { return nil, ErrCantSeek{Reason: "seeking input returned: " + err.Error()} } return &ReadSeeker{Reader: r}, nil } // Seek allows seeking in compressed data. func (r *ReadSeeker) Seek(offset int64, whence int) (int64, error) { if r.err != nil { if !errors.Is(r.err, io.EOF) { return 0, r.err } // Reset on EOF r.err = nil } // Calculate absolute offset. absOffset := offset switch whence { case io.SeekStart: case io.SeekCurrent: absOffset = r.blockStart + int64(r.i) + offset case io.SeekEnd: if r.index == nil { return 0, ErrUnsupported } absOffset = r.index.TotalUncompressed + offset default: r.err = ErrUnsupported return 0, r.err } if absOffset < 0 { return 0, errors.New("seek before start of file") } if !r.readHeader { // Make sure we read the header. _, r.err = r.Read([]byte{}) if r.err != nil { return 0, r.err } } // If we are inside current block no need to seek. // This includes no offset changes. if absOffset >= r.blockStart && absOffset < r.blockStart+int64(r.j) { r.i = int(absOffset - r.blockStart) return r.blockStart + int64(r.i), nil } rs, ok := r.r.(io.ReadSeeker) if r.index == nil || !ok { currOffset := r.blockStart + int64(r.i) if absOffset >= currOffset { err := r.Skip(absOffset - currOffset) return r.blockStart + int64(r.i), err } return 0, ErrUnsupported } // We can seek and we have an index. c, u, err := r.index.Find(absOffset) if err != nil { return r.blockStart + int64(r.i), err } // Seek to next block _, err = rs.Seek(c, io.SeekStart) if err != nil { return 0, err } r.i = r.j // Remove rest of current block. r.blockStart = u - int64(r.j) // Adjust current block start for accounting. if u < absOffset { // Forward inside block return absOffset, r.Skip(absOffset - u) } if u > absOffset { return 0, fmt.Errorf("s2 seek: (internal error) u (%d) > absOffset (%d)", u, absOffset) } return absOffset, nil } // ReadAt reads len(p) bytes into p starting at offset off in the // underlying input source. It returns the number of bytes // read (0 <= n <= len(p)) and any error encountered. // // When ReadAt returns n < len(p), it returns a non-nil error // explaining why more bytes were not returned. In this respect, // ReadAt is stricter than Read. // // Even if ReadAt returns n < len(p), it may use all of p as scratch // space during the call. If some data is available but not len(p) bytes, // ReadAt blocks until either all the data is available or an error occurs. // In this respect ReadAt is different from Read. // // If the n = len(p) bytes returned by ReadAt are at the end of the // input source, ReadAt may return either err == EOF or err == nil. // // If ReadAt is reading from an input source with a seek offset, // ReadAt should not affect nor be affected by the underlying // seek offset. // // Clients of ReadAt can execute parallel ReadAt calls on the // same input source. This is however not recommended. func (r *ReadSeeker) ReadAt(p []byte, offset int64) (int, error) { r.readAtMu.Lock() defer r.readAtMu.Unlock() _, err := r.Seek(offset, io.SeekStart) if err != nil { return 0, err } n := 0 for n < len(p) { n2, err := r.Read(p[n:]) if err != nil { // This will include io.EOF return n + n2, err } n += n2 } return n, nil } // ReadByte satisfies the io.ByteReader interface. func (r *Reader) ReadByte() (byte, error) { if r.err != nil { return 0, r.err } if r.i < r.j { c := r.decoded[r.i] r.i++ return c, nil } var tmp [1]byte for i := 0; i < 10; i++ { n, err := r.Read(tmp[:]) if err != nil { return 0, err } if n == 1 { return tmp[0], nil } } return 0, io.ErrNoProgress } // SkippableCB will register a callback for chunks with the specified ID. // ID must be a Reserved skippable chunks ID, 0x80-0xfe (inclusive). // For each chunk with the ID, the callback is called with the content. // Any returned non-nil error will abort decompression. // Only one callback per ID is supported, latest sent will be used. // Sending a nil function will disable previous callbacks. func (r *Reader) SkippableCB(id uint8, fn func(r io.Reader) error) error { if id < 0x80 || id > chunkTypePadding { return fmt.Errorf("ReaderSkippableCB: Invalid id provided, must be 0x80-0xfe (inclusive)") } r.skippableCB[id] = fn return nil } // s2DecodeDict writes the decoding of src to dst. It assumes that the varint-encoded // length of the decompressed bytes has already been read, and that len(dst) // equals that length. // // It returns 0 on success or a decodeErrCodeXxx error code on failure. func s2DecodeDict(dst, src []byte, dict *Dict) int { if dict == nil { return s2Decode(dst, src) } const debug = false const debugErrs = debug if debug { fmt.Println("Starting decode, dst len:", len(dst)) } var d, s, length int offset := len(dict.dict) - dict.repeat // As long as we can read at least 5 bytes... for s < len(src)-5 { // Removing bounds checks is SLOWER, when if doing // in := src[s:s+5] // Checked on Go 1.18 switch src[s] & 0x03 { case tagLiteral: x := uint32(src[s] >> 2) switch { case x < 60: s++ case x == 60: s += 2 x = uint32(src[s-1]) case x == 61: in := src[s : s+3] x = uint32(in[1]) | uint32(in[2])<<8 s += 3 case x == 62: in := src[s : s+4] // Load as 32 bit and shift down. x = uint32(in[0]) | uint32(in[1])<<8 | uint32(in[2])<<16 | uint32(in[3])<<24 x >>= 8 s += 4 case x == 63: in := src[s : s+5] x = uint32(in[1]) | uint32(in[2])<<8 | uint32(in[3])<<16 | uint32(in[4])<<24 s += 5 } length = int(x) + 1 if debug { fmt.Println("literals, length:", length, "d-after:", d+length) } if length > len(dst)-d || length > len(src)-s || (strconv.IntSize == 32 && length <= 0) { if debugErrs { fmt.Println("corrupt literal: length:", length, "d-left:", len(dst)-d, "src-left:", len(src)-s) } return decodeErrCodeCorrupt } copy(dst[d:], src[s:s+length]) d += length s += length continue case tagCopy1: s += 2 toffset := int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1])) length = int(src[s-2]) >> 2 & 0x7 if toffset == 0 { if debug { fmt.Print("(repeat) ") } // keep last offset switch length { case 5: length = int(src[s]) + 4 s += 1 case 6: in := src[s : s+2] length = int(uint32(in[0])|(uint32(in[1])<<8)) + (1 << 8) s += 2 case 7: in := src[s : s+3] length = int((uint32(in[2])<<16)|(uint32(in[1])<<8)|uint32(in[0])) + (1 << 16) s += 3 default: // 0-> 4 } } else { offset = toffset } length += 4 case tagCopy2: in := src[s : s+3] offset = int(uint32(in[1]) | uint32(in[2])<<8) length = 1 + int(in[0])>>2 s += 3 case tagCopy4: in := src[s : s+5] offset = int(uint32(in[1]) | uint32(in[2])<<8 | uint32(in[3])<<16 | uint32(in[4])<<24) length = 1 + int(in[0])>>2 s += 5 } if offset <= 0 || length > len(dst)-d { if debugErrs { fmt.Println("match error; offset:", offset, "length:", length, "dst-left:", len(dst)-d) } return decodeErrCodeCorrupt } // copy from dict if d < offset { if d > MaxDictSrcOffset { if debugErrs { fmt.Println("dict after", MaxDictSrcOffset, "d:", d, "offset:", offset, "length:", length) } return decodeErrCodeCorrupt } startOff := len(dict.dict) - offset + d if startOff < 0 || startOff+length > len(dict.dict) { if debugErrs { fmt.Printf("offset (%d) + length (%d) bigger than dict (%d)\n", offset, length, len(dict.dict)) } return decodeErrCodeCorrupt } if debug { fmt.Println("dict copy, length:", length, "offset:", offset, "d-after:", d+length, "dict start offset:", startOff) } copy(dst[d:d+length], dict.dict[startOff:]) d += length continue } if debug { fmt.Println("copy, length:", length, "offset:", offset, "d-after:", d+length) } // Copy from an earlier sub-slice of dst to a later sub-slice. // If no overlap, use the built-in copy: if offset > length { copy(dst[d:d+length], dst[d-offset:]) d += length continue } // Unlike the built-in copy function, this byte-by-byte copy always runs // forwards, even if the slices overlap. Conceptually, this is: // // d += forwardCopy(dst[d:d+length], dst[d-offset:]) // // We align the slices into a and b and show the compiler they are the same size. // This allows the loop to run without bounds checks. a := dst[d : d+length] b := dst[d-offset:] b = b[:len(a)] for i := range a { a[i] = b[i] } d += length } // Remaining with extra checks... for s < len(src) { switch src[s] & 0x03 { case tagLiteral: x := uint32(src[s] >> 2) switch { case x < 60: s++ case x == 60: s += 2 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } x = uint32(src[s-1]) case x == 61: s += 3 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } x = uint32(src[s-2]) | uint32(src[s-1])<<8 case x == 62: s += 4 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16 case x == 63: s += 5 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24 } length = int(x) + 1 if length > len(dst)-d || length > len(src)-s || (strconv.IntSize == 32 && length <= 0) { if debugErrs { fmt.Println("corrupt literal: length:", length, "d-left:", len(dst)-d, "src-left:", len(src)-s) } return decodeErrCodeCorrupt } if debug { fmt.Println("literals, length:", length, "d-after:", d+length) } copy(dst[d:], src[s:s+length]) d += length s += length continue case tagCopy1: s += 2 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = int(src[s-2]) >> 2 & 0x7 toffset := int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1])) if toffset == 0 { if debug { fmt.Print("(repeat) ") } // keep last offset switch length { case 5: s += 1 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = int(uint32(src[s-1])) + 4 case 6: s += 2 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = int(uint32(src[s-2])|(uint32(src[s-1])<<8)) + (1 << 8) case 7: s += 3 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = int(uint32(src[s-3])|(uint32(src[s-2])<<8)|(uint32(src[s-1])<<16)) + (1 << 16) default: // 0-> 4 } } else { offset = toffset } length += 4 case tagCopy2: s += 3 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = 1 + int(src[s-3])>>2 offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8) case tagCopy4: s += 5 if uint(s) > uint(len(src)) { // The uint conversions catch overflow from the previous line. if debugErrs { fmt.Println("src went oob") } return decodeErrCodeCorrupt } length = 1 + int(src[s-5])>>2 offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24) } if offset <= 0 || length > len(dst)-d { if debugErrs { fmt.Println("match error; offset:", offset, "length:", length, "dst-left:", len(dst)-d) } return decodeErrCodeCorrupt } // copy from dict if d < offset { if d > MaxDictSrcOffset { if debugErrs { fmt.Println("dict after", MaxDictSrcOffset, "d:", d, "offset:", offset, "length:", length) } return decodeErrCodeCorrupt } rOff := len(dict.dict) - (offset - d) if debug { fmt.Println("starting dict entry from dict offset", len(dict.dict)-rOff) } if rOff+length > len(dict.dict) { if debugErrs { fmt.Println("err: END offset", rOff+length, "bigger than dict", len(dict.dict), "dict offset:", rOff, "length:", length) } return decodeErrCodeCorrupt } if rOff < 0 { if debugErrs { fmt.Println("err: START offset", rOff, "less than 0", len(dict.dict), "dict offset:", rOff, "length:", length) } return decodeErrCodeCorrupt } copy(dst[d:d+length], dict.dict[rOff:]) d += length continue } if debug { fmt.Println("copy, length:", length, "offset:", offset, "d-after:", d+length) } // Copy from an earlier sub-slice of dst to a later sub-slice. // If no overlap, use the built-in copy: if offset > length { copy(dst[d:d+length], dst[d-offset:]) d += length continue } // Unlike the built-in copy function, this byte-by-byte copy always runs // forwards, even if the slices overlap. Conceptually, this is: // // d += forwardCopy(dst[d:d+length], dst[d-offset:]) // // We align the slices into a and b and show the compiler they are the same size. // This allows the loop to run without bounds checks. a := dst[d : d+length] b := dst[d-offset:] b = b[:len(a)] for i := range a { a[i] = b[i] } d += length } if d != len(dst) { if debugErrs { fmt.Println("wanted length", len(dst), "got", d) } return decodeErrCodeCorrupt } return 0 }