mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-10 16:40:12 +00:00
599 lines
14 KiB
Go
599 lines
14 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package obj
|
|
|
|
import (
|
|
"bytes"
|
|
"github.com/twitchyliquid64/golang-asm/objabi"
|
|
"fmt"
|
|
"io"
|
|
"strings"
|
|
)
|
|
|
|
const REG_NONE = 0
|
|
|
|
// Line returns a string containing the filename and line number for p
|
|
func (p *Prog) Line() string {
|
|
return p.Ctxt.OutermostPos(p.Pos).Format(false, true)
|
|
}
|
|
func (p *Prog) InnermostLine(w io.Writer) {
|
|
p.Ctxt.InnermostPos(p.Pos).WriteTo(w, false, true)
|
|
}
|
|
|
|
// InnermostLineNumber returns a string containing the line number for the
|
|
// innermost inlined function (if any inlining) at p's position
|
|
func (p *Prog) InnermostLineNumber() string {
|
|
return p.Ctxt.InnermostPos(p.Pos).LineNumber()
|
|
}
|
|
|
|
// InnermostLineNumberHTML returns a string containing the line number for the
|
|
// innermost inlined function (if any inlining) at p's position
|
|
func (p *Prog) InnermostLineNumberHTML() string {
|
|
return p.Ctxt.InnermostPos(p.Pos).LineNumberHTML()
|
|
}
|
|
|
|
// InnermostFilename returns a string containing the innermost
|
|
// (in inlining) filename at p's position
|
|
func (p *Prog) InnermostFilename() string {
|
|
// TODO For now, this is only used for debugging output, and if we need more/better information, it might change.
|
|
// An example of what we might want to see is the full stack of positions for inlined code, so we get some visibility into what is recorded there.
|
|
pos := p.Ctxt.InnermostPos(p.Pos)
|
|
if !pos.IsKnown() {
|
|
return "<unknown file name>"
|
|
}
|
|
return pos.Filename()
|
|
}
|
|
|
|
var armCondCode = []string{
|
|
".EQ",
|
|
".NE",
|
|
".CS",
|
|
".CC",
|
|
".MI",
|
|
".PL",
|
|
".VS",
|
|
".VC",
|
|
".HI",
|
|
".LS",
|
|
".GE",
|
|
".LT",
|
|
".GT",
|
|
".LE",
|
|
"",
|
|
".NV",
|
|
}
|
|
|
|
/* ARM scond byte */
|
|
const (
|
|
C_SCOND = (1 << 4) - 1
|
|
C_SBIT = 1 << 4
|
|
C_PBIT = 1 << 5
|
|
C_WBIT = 1 << 6
|
|
C_FBIT = 1 << 7
|
|
C_UBIT = 1 << 7
|
|
C_SCOND_XOR = 14
|
|
)
|
|
|
|
// CConv formats opcode suffix bits (Prog.Scond).
|
|
func CConv(s uint8) string {
|
|
if s == 0 {
|
|
return ""
|
|
}
|
|
for i := range opSuffixSpace {
|
|
sset := &opSuffixSpace[i]
|
|
if sset.arch == objabi.GOARCH {
|
|
return sset.cconv(s)
|
|
}
|
|
}
|
|
return fmt.Sprintf("SC???%d", s)
|
|
}
|
|
|
|
// CConvARM formats ARM opcode suffix bits (mostly condition codes).
|
|
func CConvARM(s uint8) string {
|
|
// TODO: could be great to move suffix-related things into
|
|
// ARM asm backends some day.
|
|
// obj/x86 can be used as an example.
|
|
|
|
sc := armCondCode[(s&C_SCOND)^C_SCOND_XOR]
|
|
if s&C_SBIT != 0 {
|
|
sc += ".S"
|
|
}
|
|
if s&C_PBIT != 0 {
|
|
sc += ".P"
|
|
}
|
|
if s&C_WBIT != 0 {
|
|
sc += ".W"
|
|
}
|
|
if s&C_UBIT != 0 { /* ambiguous with FBIT */
|
|
sc += ".U"
|
|
}
|
|
return sc
|
|
}
|
|
|
|
func (p *Prog) String() string {
|
|
if p == nil {
|
|
return "<nil Prog>"
|
|
}
|
|
if p.Ctxt == nil {
|
|
return "<Prog without ctxt>"
|
|
}
|
|
return fmt.Sprintf("%.5d (%v)\t%s", p.Pc, p.Line(), p.InstructionString())
|
|
}
|
|
|
|
func (p *Prog) InnermostString(w io.Writer) {
|
|
if p == nil {
|
|
io.WriteString(w, "<nil Prog>")
|
|
return
|
|
}
|
|
if p.Ctxt == nil {
|
|
io.WriteString(w, "<Prog without ctxt>")
|
|
return
|
|
}
|
|
fmt.Fprintf(w, "%.5d (", p.Pc)
|
|
p.InnermostLine(w)
|
|
io.WriteString(w, ")\t")
|
|
p.WriteInstructionString(w)
|
|
}
|
|
|
|
// InstructionString returns a string representation of the instruction without preceding
|
|
// program counter or file and line number.
|
|
func (p *Prog) InstructionString() string {
|
|
buf := new(bytes.Buffer)
|
|
p.WriteInstructionString(buf)
|
|
return buf.String()
|
|
}
|
|
|
|
// WriteInstructionString writes a string representation of the instruction without preceding
|
|
// program counter or file and line number.
|
|
func (p *Prog) WriteInstructionString(w io.Writer) {
|
|
if p == nil {
|
|
io.WriteString(w, "<nil Prog>")
|
|
return
|
|
}
|
|
|
|
if p.Ctxt == nil {
|
|
io.WriteString(w, "<Prog without ctxt>")
|
|
return
|
|
}
|
|
|
|
sc := CConv(p.Scond)
|
|
|
|
io.WriteString(w, p.As.String())
|
|
io.WriteString(w, sc)
|
|
sep := "\t"
|
|
|
|
if p.From.Type != TYPE_NONE {
|
|
io.WriteString(w, sep)
|
|
WriteDconv(w, p, &p.From)
|
|
sep = ", "
|
|
}
|
|
if p.Reg != REG_NONE {
|
|
// Should not happen but might as well show it if it does.
|
|
fmt.Fprintf(w, "%s%v", sep, Rconv(int(p.Reg)))
|
|
sep = ", "
|
|
}
|
|
for i := range p.RestArgs {
|
|
io.WriteString(w, sep)
|
|
WriteDconv(w, p, &p.RestArgs[i])
|
|
sep = ", "
|
|
}
|
|
|
|
if p.As == ATEXT {
|
|
// If there are attributes, print them. Otherwise, skip the comma.
|
|
// In short, print one of these two:
|
|
// TEXT foo(SB), DUPOK|NOSPLIT, $0
|
|
// TEXT foo(SB), $0
|
|
s := p.From.Sym.Attribute.TextAttrString()
|
|
if s != "" {
|
|
fmt.Fprintf(w, "%s%s", sep, s)
|
|
sep = ", "
|
|
}
|
|
}
|
|
if p.To.Type != TYPE_NONE {
|
|
io.WriteString(w, sep)
|
|
WriteDconv(w, p, &p.To)
|
|
}
|
|
if p.RegTo2 != REG_NONE {
|
|
fmt.Fprintf(w, "%s%v", sep, Rconv(int(p.RegTo2)))
|
|
}
|
|
}
|
|
|
|
func (ctxt *Link) NewProg() *Prog {
|
|
p := new(Prog)
|
|
p.Ctxt = ctxt
|
|
return p
|
|
}
|
|
|
|
func (ctxt *Link) CanReuseProgs() bool {
|
|
return ctxt.Debugasm == 0
|
|
}
|
|
|
|
func Dconv(p *Prog, a *Addr) string {
|
|
buf := new(bytes.Buffer)
|
|
WriteDconv(buf, p, a)
|
|
return buf.String()
|
|
}
|
|
|
|
func WriteDconv(w io.Writer, p *Prog, a *Addr) {
|
|
switch a.Type {
|
|
default:
|
|
fmt.Fprintf(w, "type=%d", a.Type)
|
|
|
|
case TYPE_NONE:
|
|
if a.Name != NAME_NONE || a.Reg != 0 || a.Sym != nil {
|
|
a.WriteNameTo(w)
|
|
fmt.Fprintf(w, "(%v)(NONE)", Rconv(int(a.Reg)))
|
|
}
|
|
|
|
case TYPE_REG:
|
|
// TODO(rsc): This special case is for x86 instructions like
|
|
// PINSRQ CX,$1,X6
|
|
// where the $1 is included in the p->to Addr.
|
|
// Move into a new field.
|
|
if a.Offset != 0 && (a.Reg < RBaseARM64 || a.Reg >= RBaseMIPS) {
|
|
fmt.Fprintf(w, "$%d,%v", a.Offset, Rconv(int(a.Reg)))
|
|
return
|
|
}
|
|
|
|
if a.Name != NAME_NONE || a.Sym != nil {
|
|
a.WriteNameTo(w)
|
|
fmt.Fprintf(w, "(%v)(REG)", Rconv(int(a.Reg)))
|
|
} else {
|
|
io.WriteString(w, Rconv(int(a.Reg)))
|
|
}
|
|
if (RBaseARM64+1<<10+1<<9) /* arm64.REG_ELEM */ <= a.Reg &&
|
|
a.Reg < (RBaseARM64+1<<11) /* arm64.REG_ELEM_END */ {
|
|
fmt.Fprintf(w, "[%d]", a.Index)
|
|
}
|
|
|
|
case TYPE_BRANCH:
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s(SB)", a.Sym.Name)
|
|
} else if a.Target() != nil {
|
|
fmt.Fprint(w, a.Target().Pc)
|
|
} else {
|
|
fmt.Fprintf(w, "%d(PC)", a.Offset)
|
|
}
|
|
|
|
case TYPE_INDIR:
|
|
io.WriteString(w, "*")
|
|
a.WriteNameTo(w)
|
|
|
|
case TYPE_MEM:
|
|
a.WriteNameTo(w)
|
|
if a.Index != REG_NONE {
|
|
if a.Scale == 0 {
|
|
// arm64 shifted or extended register offset, scale = 0.
|
|
fmt.Fprintf(w, "(%v)", Rconv(int(a.Index)))
|
|
} else {
|
|
fmt.Fprintf(w, "(%v*%d)", Rconv(int(a.Index)), int(a.Scale))
|
|
}
|
|
}
|
|
|
|
case TYPE_CONST:
|
|
io.WriteString(w, "$")
|
|
a.WriteNameTo(w)
|
|
if a.Reg != 0 {
|
|
fmt.Fprintf(w, "(%v)", Rconv(int(a.Reg)))
|
|
}
|
|
|
|
case TYPE_TEXTSIZE:
|
|
if a.Val.(int32) == objabi.ArgsSizeUnknown {
|
|
fmt.Fprintf(w, "$%d", a.Offset)
|
|
} else {
|
|
fmt.Fprintf(w, "$%d-%d", a.Offset, a.Val.(int32))
|
|
}
|
|
|
|
case TYPE_FCONST:
|
|
str := fmt.Sprintf("%.17g", a.Val.(float64))
|
|
// Make sure 1 prints as 1.0
|
|
if !strings.ContainsAny(str, ".e") {
|
|
str += ".0"
|
|
}
|
|
fmt.Fprintf(w, "$(%s)", str)
|
|
|
|
case TYPE_SCONST:
|
|
fmt.Fprintf(w, "$%q", a.Val.(string))
|
|
|
|
case TYPE_ADDR:
|
|
io.WriteString(w, "$")
|
|
a.WriteNameTo(w)
|
|
|
|
case TYPE_SHIFT:
|
|
v := int(a.Offset)
|
|
ops := "<<>>->@>"
|
|
switch objabi.GOARCH {
|
|
case "arm":
|
|
op := ops[((v>>5)&3)<<1:]
|
|
if v&(1<<4) != 0 {
|
|
fmt.Fprintf(w, "R%d%c%cR%d", v&15, op[0], op[1], (v>>8)&15)
|
|
} else {
|
|
fmt.Fprintf(w, "R%d%c%c%d", v&15, op[0], op[1], (v>>7)&31)
|
|
}
|
|
if a.Reg != 0 {
|
|
fmt.Fprintf(w, "(%v)", Rconv(int(a.Reg)))
|
|
}
|
|
case "arm64":
|
|
op := ops[((v>>22)&3)<<1:]
|
|
r := (v >> 16) & 31
|
|
fmt.Fprintf(w, "%s%c%c%d", Rconv(r+RBaseARM64), op[0], op[1], (v>>10)&63)
|
|
default:
|
|
panic("TYPE_SHIFT is not supported on " + objabi.GOARCH)
|
|
}
|
|
|
|
case TYPE_REGREG:
|
|
fmt.Fprintf(w, "(%v, %v)", Rconv(int(a.Reg)), Rconv(int(a.Offset)))
|
|
|
|
case TYPE_REGREG2:
|
|
fmt.Fprintf(w, "%v, %v", Rconv(int(a.Offset)), Rconv(int(a.Reg)))
|
|
|
|
case TYPE_REGLIST:
|
|
io.WriteString(w, RLconv(a.Offset))
|
|
}
|
|
}
|
|
|
|
func (a *Addr) WriteNameTo(w io.Writer) {
|
|
switch a.Name {
|
|
default:
|
|
fmt.Fprintf(w, "name=%d", a.Name)
|
|
|
|
case NAME_NONE:
|
|
switch {
|
|
case a.Reg == REG_NONE:
|
|
fmt.Fprint(w, a.Offset)
|
|
case a.Offset == 0:
|
|
fmt.Fprintf(w, "(%v)", Rconv(int(a.Reg)))
|
|
case a.Offset != 0:
|
|
fmt.Fprintf(w, "%d(%v)", a.Offset, Rconv(int(a.Reg)))
|
|
}
|
|
|
|
// Note: a.Reg == REG_NONE encodes the default base register for the NAME_ type.
|
|
case NAME_EXTERN:
|
|
reg := "SB"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "%s(%s)", offConv(a.Offset), reg)
|
|
}
|
|
|
|
case NAME_GOTREF:
|
|
reg := "SB"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s%s@GOT(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "%s@GOT(%s)", offConv(a.Offset), reg)
|
|
}
|
|
|
|
case NAME_STATIC:
|
|
reg := "SB"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s<>%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "<>%s(%s)", offConv(a.Offset), reg)
|
|
}
|
|
|
|
case NAME_AUTO:
|
|
reg := "SP"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "%s(%s)", offConv(a.Offset), reg)
|
|
}
|
|
|
|
case NAME_PARAM:
|
|
reg := "FP"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "%s(%s)", offConv(a.Offset), reg)
|
|
}
|
|
case NAME_TOCREF:
|
|
reg := "SB"
|
|
if a.Reg != REG_NONE {
|
|
reg = Rconv(int(a.Reg))
|
|
}
|
|
if a.Sym != nil {
|
|
fmt.Fprintf(w, "%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
|
|
} else {
|
|
fmt.Fprintf(w, "%s(%s)", offConv(a.Offset), reg)
|
|
}
|
|
}
|
|
}
|
|
|
|
func offConv(off int64) string {
|
|
if off == 0 {
|
|
return ""
|
|
}
|
|
return fmt.Sprintf("%+d", off)
|
|
}
|
|
|
|
// opSuffixSet is like regListSet, but for opcode suffixes.
|
|
//
|
|
// Unlike some other similar structures, uint8 space is not
|
|
// divided by its own values set (because there are only 256 of them).
|
|
// Instead, every arch may interpret/format all 8 bits as they like,
|
|
// as long as they register proper cconv function for it.
|
|
type opSuffixSet struct {
|
|
arch string
|
|
cconv func(suffix uint8) string
|
|
}
|
|
|
|
var opSuffixSpace []opSuffixSet
|
|
|
|
// RegisterOpSuffix assigns cconv function for formatting opcode suffixes
|
|
// when compiling for GOARCH=arch.
|
|
//
|
|
// cconv is never called with 0 argument.
|
|
func RegisterOpSuffix(arch string, cconv func(uint8) string) {
|
|
opSuffixSpace = append(opSuffixSpace, opSuffixSet{
|
|
arch: arch,
|
|
cconv: cconv,
|
|
})
|
|
}
|
|
|
|
type regSet struct {
|
|
lo int
|
|
hi int
|
|
Rconv func(int) string
|
|
}
|
|
|
|
// Few enough architectures that a linear scan is fastest.
|
|
// Not even worth sorting.
|
|
var regSpace []regSet
|
|
|
|
/*
|
|
Each architecture defines a register space as a unique
|
|
integer range.
|
|
Here is the list of architectures and the base of their register spaces.
|
|
*/
|
|
|
|
const (
|
|
// Because of masking operations in the encodings, each register
|
|
// space should start at 0 modulo some power of 2.
|
|
RBase386 = 1 * 1024
|
|
RBaseAMD64 = 2 * 1024
|
|
RBaseARM = 3 * 1024
|
|
RBasePPC64 = 4 * 1024 // range [4k, 8k)
|
|
RBaseARM64 = 8 * 1024 // range [8k, 13k)
|
|
RBaseMIPS = 13 * 1024 // range [13k, 14k)
|
|
RBaseS390X = 14 * 1024 // range [14k, 15k)
|
|
RBaseRISCV = 15 * 1024 // range [15k, 16k)
|
|
RBaseWasm = 16 * 1024
|
|
)
|
|
|
|
// RegisterRegister binds a pretty-printer (Rconv) for register
|
|
// numbers to a given register number range. Lo is inclusive,
|
|
// hi exclusive (valid registers are lo through hi-1).
|
|
func RegisterRegister(lo, hi int, Rconv func(int) string) {
|
|
regSpace = append(regSpace, regSet{lo, hi, Rconv})
|
|
}
|
|
|
|
func Rconv(reg int) string {
|
|
if reg == REG_NONE {
|
|
return "NONE"
|
|
}
|
|
for i := range regSpace {
|
|
rs := ®Space[i]
|
|
if rs.lo <= reg && reg < rs.hi {
|
|
return rs.Rconv(reg)
|
|
}
|
|
}
|
|
return fmt.Sprintf("R???%d", reg)
|
|
}
|
|
|
|
type regListSet struct {
|
|
lo int64
|
|
hi int64
|
|
RLconv func(int64) string
|
|
}
|
|
|
|
var regListSpace []regListSet
|
|
|
|
// Each architecture is allotted a distinct subspace: [Lo, Hi) for declaring its
|
|
// arch-specific register list numbers.
|
|
const (
|
|
RegListARMLo = 0
|
|
RegListARMHi = 1 << 16
|
|
|
|
// arm64 uses the 60th bit to differentiate from other archs
|
|
RegListARM64Lo = 1 << 60
|
|
RegListARM64Hi = 1<<61 - 1
|
|
|
|
// x86 uses the 61th bit to differentiate from other archs
|
|
RegListX86Lo = 1 << 61
|
|
RegListX86Hi = 1<<62 - 1
|
|
)
|
|
|
|
// RegisterRegisterList binds a pretty-printer (RLconv) for register list
|
|
// numbers to a given register list number range. Lo is inclusive,
|
|
// hi exclusive (valid register list are lo through hi-1).
|
|
func RegisterRegisterList(lo, hi int64, rlconv func(int64) string) {
|
|
regListSpace = append(regListSpace, regListSet{lo, hi, rlconv})
|
|
}
|
|
|
|
func RLconv(list int64) string {
|
|
for i := range regListSpace {
|
|
rls := ®ListSpace[i]
|
|
if rls.lo <= list && list < rls.hi {
|
|
return rls.RLconv(list)
|
|
}
|
|
}
|
|
return fmt.Sprintf("RL???%d", list)
|
|
}
|
|
|
|
type opSet struct {
|
|
lo As
|
|
names []string
|
|
}
|
|
|
|
// Not even worth sorting
|
|
var aSpace []opSet
|
|
|
|
// RegisterOpcode binds a list of instruction names
|
|
// to a given instruction number range.
|
|
func RegisterOpcode(lo As, Anames []string) {
|
|
if len(Anames) > AllowedOpCodes {
|
|
panic(fmt.Sprintf("too many instructions, have %d max %d", len(Anames), AllowedOpCodes))
|
|
}
|
|
aSpace = append(aSpace, opSet{lo, Anames})
|
|
}
|
|
|
|
func (a As) String() string {
|
|
if 0 <= a && int(a) < len(Anames) {
|
|
return Anames[a]
|
|
}
|
|
for i := range aSpace {
|
|
as := &aSpace[i]
|
|
if as.lo <= a && int(a-as.lo) < len(as.names) {
|
|
return as.names[a-as.lo]
|
|
}
|
|
}
|
|
return fmt.Sprintf("A???%d", a)
|
|
}
|
|
|
|
var Anames = []string{
|
|
"XXX",
|
|
"CALL",
|
|
"DUFFCOPY",
|
|
"DUFFZERO",
|
|
"END",
|
|
"FUNCDATA",
|
|
"JMP",
|
|
"NOP",
|
|
"PCALIGN",
|
|
"PCDATA",
|
|
"RET",
|
|
"GETCALLERPC",
|
|
"TEXT",
|
|
"UNDEF",
|
|
}
|
|
|
|
func Bool2int(b bool) int {
|
|
// The compiler currently only optimizes this form.
|
|
// See issue 6011.
|
|
var i int
|
|
if b {
|
|
i = 1
|
|
} else {
|
|
i = 0
|
|
}
|
|
return i
|
|
}
|