mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-15 02:50:13 +00:00
7cc40302a5
* add miekg/dns dependency * set/validate accountDomain * move finger to dereferencer * totally break GetRemoteAccount * start reworking finger func a bit * start reworking getRemoteAccount a bit * move mention parts to namestring * rework webfingerget * use util function to extract webfinger parts * use accountDomain * rework finger again, final form * just a real nasty commit, the worst * remove refresh from account * use new ASRepToAccount signature * fix incorrect debug call * fix for new getRemoteAccount * rework GetRemoteAccount * start updating tests to remove repetition * break a lot of tests Move shared test logic into the testrig, rather than having it scattered all over the place. This allows us to just mock the transport controller once, and have all tests use it (unless they need not to for some other reason). * fix up tests to use main mock httpclient * webfinger only if necessary * cheeky linting with the lads * update mentionName regex recognize instance accounts * don't finger instance accounts * test webfinger part extraction * increase default worker count to 4 per cpu * don't repeat regex parsing * final search for discovered accountDomain * be more permissive in namestring lookup * add more extraction tests * simplify GetParseMentionFunc * skip long search if local account * fix broken test * consolidate to all use same caching libraries Signed-off-by: kim <grufwub@gmail.com> * perform more caching in the database layer Signed-off-by: kim <grufwub@gmail.com> * remove ASNote cache Signed-off-by: kim <grufwub@gmail.com> * update cache library, improve db tracing hooks Signed-off-by: kim <grufwub@gmail.com> * return ErrNoEntries if no account status IDs found, small formatting changes Signed-off-by: kim <grufwub@gmail.com> * fix tests, thanks tobi! Signed-off-by: kim <grufwub@gmail.com> Co-authored-by: tsmethurst <tobi.smethurst@protonmail.com>
219 lines
5.9 KiB
Go
219 lines
5.9 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package slices defines various functions useful with slices of any type.
|
|
// Unless otherwise specified, these functions all apply to the elements
|
|
// of a slice at index 0 <= i < len(s).
|
|
//
|
|
// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
|
|
// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
|
|
// or the sorting may fail to sort correctly. A common case is when sorting slices of
|
|
// floating-point numbers containing NaN values.
|
|
package slices
|
|
|
|
import "golang.org/x/exp/constraints"
|
|
|
|
// Equal reports whether two slices are equal: the same length and all
|
|
// elements equal. If the lengths are different, Equal returns false.
|
|
// Otherwise, the elements are compared in increasing index order, and the
|
|
// comparison stops at the first unequal pair.
|
|
// Floating point NaNs are not considered equal.
|
|
func Equal[E comparable](s1, s2 []E) bool {
|
|
if len(s1) != len(s2) {
|
|
return false
|
|
}
|
|
for i := range s1 {
|
|
if s1[i] != s2[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// EqualFunc reports whether two slices are equal using a comparison
|
|
// function on each pair of elements. If the lengths are different,
|
|
// EqualFunc returns false. Otherwise, the elements are compared in
|
|
// increasing index order, and the comparison stops at the first index
|
|
// for which eq returns false.
|
|
func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
|
|
if len(s1) != len(s2) {
|
|
return false
|
|
}
|
|
for i, v1 := range s1 {
|
|
v2 := s2[i]
|
|
if !eq(v1, v2) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Compare compares the elements of s1 and s2.
|
|
// The elements are compared sequentially, starting at index 0,
|
|
// until one element is not equal to the other.
|
|
// The result of comparing the first non-matching elements is returned.
|
|
// If both slices are equal until one of them ends, the shorter slice is
|
|
// considered less than the longer one.
|
|
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
|
|
// Comparisons involving floating point NaNs are ignored.
|
|
func Compare[E constraints.Ordered](s1, s2 []E) int {
|
|
s2len := len(s2)
|
|
for i, v1 := range s1 {
|
|
if i >= s2len {
|
|
return +1
|
|
}
|
|
v2 := s2[i]
|
|
switch {
|
|
case v1 < v2:
|
|
return -1
|
|
case v1 > v2:
|
|
return +1
|
|
}
|
|
}
|
|
if len(s1) < s2len {
|
|
return -1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// CompareFunc is like Compare but uses a comparison function
|
|
// on each pair of elements. The elements are compared in increasing
|
|
// index order, and the comparisons stop after the first time cmp
|
|
// returns non-zero.
|
|
// The result is the first non-zero result of cmp; if cmp always
|
|
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
|
|
// and +1 if len(s1) > len(s2).
|
|
func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
|
|
s2len := len(s2)
|
|
for i, v1 := range s1 {
|
|
if i >= s2len {
|
|
return +1
|
|
}
|
|
v2 := s2[i]
|
|
if c := cmp(v1, v2); c != 0 {
|
|
return c
|
|
}
|
|
}
|
|
if len(s1) < s2len {
|
|
return -1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Index returns the index of the first occurrence of v in s,
|
|
// or -1 if not present.
|
|
func Index[E comparable](s []E, v E) int {
|
|
for i, vs := range s {
|
|
if v == vs {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// IndexFunc returns the first index i satisfying f(s[i]),
|
|
// or -1 if none do.
|
|
func IndexFunc[E any](s []E, f func(E) bool) int {
|
|
for i, v := range s {
|
|
if f(v) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Contains reports whether v is present in s.
|
|
func Contains[E comparable](s []E, v E) bool {
|
|
return Index(s, v) >= 0
|
|
}
|
|
|
|
// Insert inserts the values v... into s at index i,
|
|
// returning the modified slice.
|
|
// In the returned slice r, r[i] == v[0].
|
|
// Insert panics if i is out of range.
|
|
// This function is O(len(s) + len(v)).
|
|
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
|
|
tot := len(s) + len(v)
|
|
if tot <= cap(s) {
|
|
s2 := s[:tot]
|
|
copy(s2[i+len(v):], s[i:])
|
|
copy(s2[i:], v)
|
|
return s2
|
|
}
|
|
s2 := make(S, tot)
|
|
copy(s2, s[:i])
|
|
copy(s2[i:], v)
|
|
copy(s2[i+len(v):], s[i:])
|
|
return s2
|
|
}
|
|
|
|
// Delete removes the elements s[i:j] from s, returning the modified slice.
|
|
// Delete panics if s[i:j] is not a valid slice of s.
|
|
// Delete modifies the contents of the slice s; it does not create a new slice.
|
|
// Delete is O(len(s)-(j-i)), so if many items must be deleted, it is better to
|
|
// make a single call deleting them all together than to delete one at a time.
|
|
func Delete[S ~[]E, E any](s S, i, j int) S {
|
|
return append(s[:i], s[j:]...)
|
|
}
|
|
|
|
// Clone returns a copy of the slice.
|
|
// The elements are copied using assignment, so this is a shallow clone.
|
|
func Clone[S ~[]E, E any](s S) S {
|
|
// Preserve nil in case it matters.
|
|
if s == nil {
|
|
return nil
|
|
}
|
|
return append(S([]E{}), s...)
|
|
}
|
|
|
|
// Compact replaces consecutive runs of equal elements with a single copy.
|
|
// This is like the uniq command found on Unix.
|
|
// Compact modifies the contents of the slice s; it does not create a new slice.
|
|
func Compact[S ~[]E, E comparable](s S) S {
|
|
if len(s) == 0 {
|
|
return s
|
|
}
|
|
i := 1
|
|
last := s[0]
|
|
for _, v := range s[1:] {
|
|
if v != last {
|
|
s[i] = v
|
|
i++
|
|
last = v
|
|
}
|
|
}
|
|
return s[:i]
|
|
}
|
|
|
|
// CompactFunc is like Compact but uses a comparison function.
|
|
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
|
|
if len(s) == 0 {
|
|
return s
|
|
}
|
|
i := 1
|
|
last := s[0]
|
|
for _, v := range s[1:] {
|
|
if !eq(v, last) {
|
|
s[i] = v
|
|
i++
|
|
last = v
|
|
}
|
|
}
|
|
return s[:i]
|
|
}
|
|
|
|
// Grow increases the slice's capacity, if necessary, to guarantee space for
|
|
// another n elements. After Grow(n), at least n elements can be appended
|
|
// to the slice without another allocation. Grow may modify elements of the
|
|
// slice between the length and the capacity. If n is negative or too large to
|
|
// allocate the memory, Grow panics.
|
|
func Grow[S ~[]E, E any](s S, n int) S {
|
|
return append(s, make(S, n)...)[:len(s)]
|
|
}
|
|
|
|
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
|
|
func Clip[S ~[]E, E any](s S) S {
|
|
return s[:len(s):len(s)]
|
|
}
|