mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-22 19:56:39 +00:00
94e87610c4
* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
591 lines
18 KiB
Go
591 lines
18 KiB
Go
// Copyright 2014 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"sort"
|
|
|
|
"github.com/golang/geo/s1"
|
|
)
|
|
|
|
// A CellUnion is a collection of CellIDs.
|
|
//
|
|
// It is normalized if it is sorted, and does not contain redundancy.
|
|
// Specifically, it may not contain the same CellID twice, nor a CellID that
|
|
// is contained by another, nor the four sibling CellIDs that are children of
|
|
// a single higher level CellID.
|
|
//
|
|
// CellUnions are not required to be normalized, but certain operations will
|
|
// return different results if they are not (e.g. Contains).
|
|
type CellUnion []CellID
|
|
|
|
// CellUnionFromRange creates a CellUnion that covers the half-open range
|
|
// of leaf cells [begin, end). If begin == end the resulting union is empty.
|
|
// This requires that begin and end are both leaves, and begin <= end.
|
|
// To create a closed-ended range, pass in end.Next().
|
|
func CellUnionFromRange(begin, end CellID) CellUnion {
|
|
// We repeatedly add the largest cell we can.
|
|
var cu CellUnion
|
|
for id := begin.MaxTile(end); id != end; id = id.Next().MaxTile(end) {
|
|
cu = append(cu, id)
|
|
}
|
|
// The output is normalized because the cells are added in order by the iteration.
|
|
return cu
|
|
}
|
|
|
|
// CellUnionFromUnion creates a CellUnion from the union of the given CellUnions.
|
|
func CellUnionFromUnion(cellUnions ...CellUnion) CellUnion {
|
|
var cu CellUnion
|
|
for _, cellUnion := range cellUnions {
|
|
cu = append(cu, cellUnion...)
|
|
}
|
|
cu.Normalize()
|
|
return cu
|
|
}
|
|
|
|
// CellUnionFromIntersection creates a CellUnion from the intersection of the given CellUnions.
|
|
func CellUnionFromIntersection(x, y CellUnion) CellUnion {
|
|
var cu CellUnion
|
|
|
|
// This is a fairly efficient calculation that uses binary search to skip
|
|
// over sections of both input vectors. It takes constant time if all the
|
|
// cells of x come before or after all the cells of y in CellID order.
|
|
var i, j int
|
|
for i < len(x) && j < len(y) {
|
|
iMin := x[i].RangeMin()
|
|
jMin := y[j].RangeMin()
|
|
if iMin > jMin {
|
|
// Either j.Contains(i) or the two cells are disjoint.
|
|
if x[i] <= y[j].RangeMax() {
|
|
cu = append(cu, x[i])
|
|
i++
|
|
} else {
|
|
// Advance j to the first cell possibly contained by x[i].
|
|
j = y.lowerBound(j+1, len(y), iMin)
|
|
// The previous cell y[j-1] may now contain x[i].
|
|
if x[i] <= y[j-1].RangeMax() {
|
|
j--
|
|
}
|
|
}
|
|
} else if jMin > iMin {
|
|
// Identical to the code above with i and j reversed.
|
|
if y[j] <= x[i].RangeMax() {
|
|
cu = append(cu, y[j])
|
|
j++
|
|
} else {
|
|
i = x.lowerBound(i+1, len(x), jMin)
|
|
if y[j] <= x[i-1].RangeMax() {
|
|
i--
|
|
}
|
|
}
|
|
} else {
|
|
// i and j have the same RangeMin(), so one contains the other.
|
|
if x[i] < y[j] {
|
|
cu = append(cu, x[i])
|
|
i++
|
|
} else {
|
|
cu = append(cu, y[j])
|
|
j++
|
|
}
|
|
}
|
|
}
|
|
|
|
// The output is generated in sorted order.
|
|
cu.Normalize()
|
|
return cu
|
|
}
|
|
|
|
// CellUnionFromIntersectionWithCellID creates a CellUnion from the intersection
|
|
// of a CellUnion with the given CellID. This can be useful for splitting a
|
|
// CellUnion into chunks.
|
|
func CellUnionFromIntersectionWithCellID(x CellUnion, id CellID) CellUnion {
|
|
var cu CellUnion
|
|
if x.ContainsCellID(id) {
|
|
cu = append(cu, id)
|
|
cu.Normalize()
|
|
return cu
|
|
}
|
|
|
|
idmax := id.RangeMax()
|
|
for i := x.lowerBound(0, len(x), id.RangeMin()); i < len(x) && x[i] <= idmax; i++ {
|
|
cu = append(cu, x[i])
|
|
}
|
|
|
|
cu.Normalize()
|
|
return cu
|
|
}
|
|
|
|
// CellUnionFromDifference creates a CellUnion from the difference (x - y)
|
|
// of the given CellUnions.
|
|
func CellUnionFromDifference(x, y CellUnion) CellUnion {
|
|
// TODO(roberts): This is approximately O(N*log(N)), but could probably
|
|
// use similar techniques as CellUnionFromIntersectionWithCellID to be more efficient.
|
|
|
|
var cu CellUnion
|
|
for _, xid := range x {
|
|
cu.cellUnionDifferenceInternal(xid, &y)
|
|
}
|
|
|
|
// The output is generated in sorted order, and there should not be any
|
|
// cells that can be merged (provided that both inputs were normalized).
|
|
return cu
|
|
}
|
|
|
|
// The C++ constructor methods FromNormalized and FromVerbatim are not necessary
|
|
// since they don't call Normalize, and just set the CellIDs directly on the object,
|
|
// so straight casting is sufficient in Go to replicate this behavior.
|
|
|
|
// IsValid reports whether the cell union is valid, meaning that the CellIDs are
|
|
// valid, non-overlapping, and sorted in increasing order.
|
|
func (cu *CellUnion) IsValid() bool {
|
|
for i, cid := range *cu {
|
|
if !cid.IsValid() {
|
|
return false
|
|
}
|
|
if i == 0 {
|
|
continue
|
|
}
|
|
if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// IsNormalized reports whether the cell union is normalized, meaning that it is
|
|
// satisfies IsValid and that no four cells have a common parent.
|
|
// Certain operations such as Contains will return a different
|
|
// result if the cell union is not normalized.
|
|
func (cu *CellUnion) IsNormalized() bool {
|
|
for i, cid := range *cu {
|
|
if !cid.IsValid() {
|
|
return false
|
|
}
|
|
if i == 0 {
|
|
continue
|
|
}
|
|
if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
|
|
return false
|
|
}
|
|
if i < 3 {
|
|
continue
|
|
}
|
|
if areSiblings((*cu)[i-3], (*cu)[i-2], (*cu)[i-1], cid) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Normalize normalizes the CellUnion.
|
|
func (cu *CellUnion) Normalize() {
|
|
sortCellIDs(*cu)
|
|
|
|
output := make([]CellID, 0, len(*cu)) // the list of accepted cells
|
|
// Loop invariant: output is a sorted list of cells with no redundancy.
|
|
for _, ci := range *cu {
|
|
// The first two passes here either ignore this new candidate,
|
|
// or remove previously accepted cells that are covered by this candidate.
|
|
|
|
// Ignore this cell if it is contained by the previous one.
|
|
// We only need to check the last accepted cell. The ordering of the
|
|
// cells implies containment (but not the converse), and output has no redundancy,
|
|
// so if this candidate is not contained by the last accepted cell
|
|
// then it cannot be contained by any previously accepted cell.
|
|
if len(output) > 0 && output[len(output)-1].Contains(ci) {
|
|
continue
|
|
}
|
|
|
|
// Discard any previously accepted cells contained by this one.
|
|
// This could be any contiguous trailing subsequence, but it can't be
|
|
// a discontiguous subsequence because of the containment property of
|
|
// sorted S2 cells mentioned above.
|
|
j := len(output) - 1 // last index to keep
|
|
for j >= 0 {
|
|
if !ci.Contains(output[j]) {
|
|
break
|
|
}
|
|
j--
|
|
}
|
|
output = output[:j+1]
|
|
|
|
// See if the last three cells plus this one can be collapsed.
|
|
// We loop because collapsing three accepted cells and adding a higher level cell
|
|
// could cascade into previously accepted cells.
|
|
for len(output) >= 3 && areSiblings(output[len(output)-3], output[len(output)-2], output[len(output)-1], ci) {
|
|
// Replace four children by their parent cell.
|
|
output = output[:len(output)-3]
|
|
ci = ci.immediateParent() // checked !ci.isFace above
|
|
}
|
|
output = append(output, ci)
|
|
}
|
|
*cu = output
|
|
}
|
|
|
|
// IntersectsCellID reports whether this CellUnion intersects the given cell ID.
|
|
func (cu *CellUnion) IntersectsCellID(id CellID) bool {
|
|
// Find index of array item that occurs directly after our probe cell:
|
|
i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
|
|
|
|
if i != len(*cu) && (*cu)[i].RangeMin() <= id.RangeMax() {
|
|
return true
|
|
}
|
|
return i != 0 && (*cu)[i-1].RangeMax() >= id.RangeMin()
|
|
}
|
|
|
|
// ContainsCellID reports whether the CellUnion contains the given cell ID.
|
|
// Containment is defined with respect to regions, e.g. a cell contains its 4 children.
|
|
//
|
|
// CAVEAT: If you have constructed a non-normalized CellUnion, note that groups
|
|
// of 4 child cells are *not* considered to contain their parent cell. To get
|
|
// this behavior you must use one of the call Normalize() explicitly.
|
|
func (cu *CellUnion) ContainsCellID(id CellID) bool {
|
|
// Find index of array item that occurs directly after our probe cell:
|
|
i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
|
|
|
|
if i != len(*cu) && (*cu)[i].RangeMin() <= id {
|
|
return true
|
|
}
|
|
return i != 0 && (*cu)[i-1].RangeMax() >= id
|
|
}
|
|
|
|
// Denormalize replaces this CellUnion with an expanded version of the
|
|
// CellUnion where any cell whose level is less than minLevel or where
|
|
// (level - minLevel) is not a multiple of levelMod is replaced by its
|
|
// children, until either both of these conditions are satisfied or the
|
|
// maximum level is reached.
|
|
func (cu *CellUnion) Denormalize(minLevel, levelMod int) {
|
|
var denorm CellUnion
|
|
for _, id := range *cu {
|
|
level := id.Level()
|
|
newLevel := level
|
|
if newLevel < minLevel {
|
|
newLevel = minLevel
|
|
}
|
|
if levelMod > 1 {
|
|
newLevel += (maxLevel - (newLevel - minLevel)) % levelMod
|
|
if newLevel > maxLevel {
|
|
newLevel = maxLevel
|
|
}
|
|
}
|
|
if newLevel == level {
|
|
denorm = append(denorm, id)
|
|
} else {
|
|
end := id.ChildEndAtLevel(newLevel)
|
|
for ci := id.ChildBeginAtLevel(newLevel); ci != end; ci = ci.Next() {
|
|
denorm = append(denorm, ci)
|
|
}
|
|
}
|
|
}
|
|
*cu = denorm
|
|
}
|
|
|
|
// RectBound returns a Rect that bounds this entity.
|
|
func (cu *CellUnion) RectBound() Rect {
|
|
bound := EmptyRect()
|
|
for _, c := range *cu {
|
|
bound = bound.Union(CellFromCellID(c).RectBound())
|
|
}
|
|
return bound
|
|
}
|
|
|
|
// CapBound returns a Cap that bounds this entity.
|
|
func (cu *CellUnion) CapBound() Cap {
|
|
if len(*cu) == 0 {
|
|
return EmptyCap()
|
|
}
|
|
|
|
// Compute the approximate centroid of the region. This won't produce the
|
|
// bounding cap of minimal area, but it should be close enough.
|
|
var centroid Point
|
|
|
|
for _, ci := range *cu {
|
|
area := AvgAreaMetric.Value(ci.Level())
|
|
centroid = Point{centroid.Add(ci.Point().Mul(area))}
|
|
}
|
|
|
|
if zero := (Point{}); centroid == zero {
|
|
centroid = PointFromCoords(1, 0, 0)
|
|
} else {
|
|
centroid = Point{centroid.Normalize()}
|
|
}
|
|
|
|
// Use the centroid as the cap axis, and expand the cap angle so that it
|
|
// contains the bounding caps of all the individual cells. Note that it is
|
|
// *not* sufficient to just bound all the cell vertices because the bounding
|
|
// cap may be concave (i.e. cover more than one hemisphere).
|
|
c := CapFromPoint(centroid)
|
|
for _, ci := range *cu {
|
|
c = c.AddCap(CellFromCellID(ci).CapBound())
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
// ContainsCell reports whether this cell union contains the given cell.
|
|
func (cu *CellUnion) ContainsCell(c Cell) bool {
|
|
return cu.ContainsCellID(c.id)
|
|
}
|
|
|
|
// IntersectsCell reports whether this cell union intersects the given cell.
|
|
func (cu *CellUnion) IntersectsCell(c Cell) bool {
|
|
return cu.IntersectsCellID(c.id)
|
|
}
|
|
|
|
// ContainsPoint reports whether this cell union contains the given point.
|
|
func (cu *CellUnion) ContainsPoint(p Point) bool {
|
|
return cu.ContainsCell(CellFromPoint(p))
|
|
}
|
|
|
|
// CellUnionBound computes a covering of the CellUnion.
|
|
func (cu *CellUnion) CellUnionBound() []CellID {
|
|
return cu.CapBound().CellUnionBound()
|
|
}
|
|
|
|
// LeafCellsCovered reports the number of leaf cells covered by this cell union.
|
|
// This will be no more than 6*2^60 for the whole sphere.
|
|
func (cu *CellUnion) LeafCellsCovered() int64 {
|
|
var numLeaves int64
|
|
for _, c := range *cu {
|
|
numLeaves += 1 << uint64((maxLevel-int64(c.Level()))<<1)
|
|
}
|
|
return numLeaves
|
|
}
|
|
|
|
// Returns true if the given four cells have a common parent.
|
|
// This requires that the four CellIDs are distinct.
|
|
func areSiblings(a, b, c, d CellID) bool {
|
|
// A necessary (but not sufficient) condition is that the XOR of the
|
|
// four cell IDs must be zero. This is also very fast to test.
|
|
if (a ^ b ^ c) != d {
|
|
return false
|
|
}
|
|
|
|
// Now we do a slightly more expensive but exact test. First, compute a
|
|
// mask that blocks out the two bits that encode the child position of
|
|
// "id" with respect to its parent, then check that the other three
|
|
// children all agree with "mask".
|
|
mask := d.lsb() << 1
|
|
mask = ^(mask + (mask << 1))
|
|
idMasked := (uint64(d) & mask)
|
|
return ((uint64(a)&mask) == idMasked &&
|
|
(uint64(b)&mask) == idMasked &&
|
|
(uint64(c)&mask) == idMasked &&
|
|
!d.isFace())
|
|
}
|
|
|
|
// Contains reports whether this CellUnion contains all of the CellIDs of the given CellUnion.
|
|
func (cu *CellUnion) Contains(o CellUnion) bool {
|
|
// TODO(roberts): Investigate alternatives such as divide-and-conquer
|
|
// or alternating-skip-search that may be significantly faster in both
|
|
// the average and worst case. This applies to Intersects as well.
|
|
for _, id := range o {
|
|
if !cu.ContainsCellID(id) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// Intersects reports whether this CellUnion intersects any of the CellIDs of the given CellUnion.
|
|
func (cu *CellUnion) Intersects(o CellUnion) bool {
|
|
for _, c := range *cu {
|
|
if o.IntersectsCellID(c) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// lowerBound returns the index in this CellUnion to the first element whose value
|
|
// is not considered to go before the given cell id. (i.e., either it is equivalent
|
|
// or comes after the given id.) If there is no match, then end is returned.
|
|
func (cu *CellUnion) lowerBound(begin, end int, id CellID) int {
|
|
for i := begin; i < end; i++ {
|
|
if (*cu)[i] >= id {
|
|
return i
|
|
}
|
|
}
|
|
|
|
return end
|
|
}
|
|
|
|
// cellUnionDifferenceInternal adds the difference between the CellID and the union to
|
|
// the result CellUnion. If they intersect but the difference is non-empty, it divides
|
|
// and conquers.
|
|
func (cu *CellUnion) cellUnionDifferenceInternal(id CellID, other *CellUnion) {
|
|
if !other.IntersectsCellID(id) {
|
|
(*cu) = append((*cu), id)
|
|
return
|
|
}
|
|
|
|
if !other.ContainsCellID(id) {
|
|
for _, child := range id.Children() {
|
|
cu.cellUnionDifferenceInternal(child, other)
|
|
}
|
|
}
|
|
}
|
|
|
|
// ExpandAtLevel expands this CellUnion by adding a rim of cells at expandLevel
|
|
// around the unions boundary.
|
|
//
|
|
// For each cell c in the union, we add all cells at level
|
|
// expandLevel that abut c. There are typically eight of those
|
|
// (four edge-abutting and four sharing a vertex). However, if c is
|
|
// finer than expandLevel, we add all cells abutting
|
|
// c.Parent(expandLevel) as well as c.Parent(expandLevel) itself,
|
|
// as an expandLevel cell rarely abuts a smaller cell.
|
|
//
|
|
// Note that the size of the output is exponential in
|
|
// expandLevel. For example, if expandLevel == 20 and the input
|
|
// has a cell at level 10, there will be on the order of 4000
|
|
// adjacent cells in the output. For most applications the
|
|
// ExpandByRadius method below is easier to use.
|
|
func (cu *CellUnion) ExpandAtLevel(level int) {
|
|
var output CellUnion
|
|
levelLsb := lsbForLevel(level)
|
|
for i := len(*cu) - 1; i >= 0; i-- {
|
|
id := (*cu)[i]
|
|
if id.lsb() < levelLsb {
|
|
id = id.Parent(level)
|
|
// Optimization: skip over any cells contained by this one. This is
|
|
// especially important when very small regions are being expanded.
|
|
for i > 0 && id.Contains((*cu)[i-1]) {
|
|
i--
|
|
}
|
|
}
|
|
output = append(output, id)
|
|
output = append(output, id.AllNeighbors(level)...)
|
|
}
|
|
sortCellIDs(output)
|
|
|
|
*cu = output
|
|
cu.Normalize()
|
|
}
|
|
|
|
// ExpandByRadius expands this CellUnion such that it contains all points whose
|
|
// distance to the CellUnion is at most minRadius, but do not use cells that
|
|
// are more than maxLevelDiff levels higher than the largest cell in the input.
|
|
// The second parameter controls the tradeoff between accuracy and output size
|
|
// when a large region is being expanded by a small amount (e.g. expanding Canada
|
|
// by 1km). For example, if maxLevelDiff == 4 the region will always be expanded
|
|
// by approximately 1/16 the width of its largest cell. Note that in the worst case,
|
|
// the number of cells in the output can be up to 4 * (1 + 2 ** maxLevelDiff) times
|
|
// larger than the number of cells in the input.
|
|
func (cu *CellUnion) ExpandByRadius(minRadius s1.Angle, maxLevelDiff int) {
|
|
minLevel := maxLevel
|
|
for _, cid := range *cu {
|
|
minLevel = minInt(minLevel, cid.Level())
|
|
}
|
|
|
|
// Find the maximum level such that all cells are at least "minRadius" wide.
|
|
radiusLevel := MinWidthMetric.MaxLevel(minRadius.Radians())
|
|
if radiusLevel == 0 && minRadius.Radians() > MinWidthMetric.Value(0) {
|
|
// The requested expansion is greater than the width of a face cell.
|
|
// The easiest way to handle this is to expand twice.
|
|
cu.ExpandAtLevel(0)
|
|
}
|
|
cu.ExpandAtLevel(minInt(minLevel+maxLevelDiff, radiusLevel))
|
|
}
|
|
|
|
// Equal reports whether the two CellUnions are equal.
|
|
func (cu CellUnion) Equal(o CellUnion) bool {
|
|
if len(cu) != len(o) {
|
|
return false
|
|
}
|
|
for i := 0; i < len(cu); i++ {
|
|
if cu[i] != o[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// AverageArea returns the average area of this CellUnion.
|
|
// This is accurate to within a factor of 1.7.
|
|
func (cu *CellUnion) AverageArea() float64 {
|
|
return AvgAreaMetric.Value(maxLevel) * float64(cu.LeafCellsCovered())
|
|
}
|
|
|
|
// ApproxArea returns the approximate area of this CellUnion. This method is accurate
|
|
// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
|
|
// at level 5 or higher within the union.
|
|
func (cu *CellUnion) ApproxArea() float64 {
|
|
var area float64
|
|
for _, id := range *cu {
|
|
area += CellFromCellID(id).ApproxArea()
|
|
}
|
|
return area
|
|
}
|
|
|
|
// ExactArea returns the area of this CellUnion as accurately as possible.
|
|
func (cu *CellUnion) ExactArea() float64 {
|
|
var area float64
|
|
for _, id := range *cu {
|
|
area += CellFromCellID(id).ExactArea()
|
|
}
|
|
return area
|
|
}
|
|
|
|
// Encode encodes the CellUnion.
|
|
func (cu *CellUnion) Encode(w io.Writer) error {
|
|
e := &encoder{w: w}
|
|
cu.encode(e)
|
|
return e.err
|
|
}
|
|
|
|
func (cu *CellUnion) encode(e *encoder) {
|
|
e.writeInt8(encodingVersion)
|
|
e.writeInt64(int64(len(*cu)))
|
|
for _, ci := range *cu {
|
|
ci.encode(e)
|
|
}
|
|
}
|
|
|
|
// Decode decodes the CellUnion.
|
|
func (cu *CellUnion) Decode(r io.Reader) error {
|
|
d := &decoder{r: asByteReader(r)}
|
|
cu.decode(d)
|
|
return d.err
|
|
}
|
|
|
|
func (cu *CellUnion) decode(d *decoder) {
|
|
version := d.readInt8()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
if version != encodingVersion {
|
|
d.err = fmt.Errorf("only version %d is supported", encodingVersion)
|
|
return
|
|
}
|
|
n := d.readInt64()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
const maxCells = 1000000
|
|
if n > maxCells {
|
|
d.err = fmt.Errorf("too many cells (%d; max is %d)", n, maxCells)
|
|
return
|
|
}
|
|
*cu = make([]CellID, n)
|
|
for i := range *cu {
|
|
(*cu)[i].decode(d)
|
|
}
|
|
}
|