mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-24 04:36:38 +00:00
94e87610c4
* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
520 lines
17 KiB
Go
520 lines
17 KiB
Go
// Copyright 2014 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
|
|
"github.com/golang/geo/r1"
|
|
"github.com/golang/geo/s1"
|
|
)
|
|
|
|
var (
|
|
// centerPoint is the default center for Caps
|
|
centerPoint = PointFromCoords(1.0, 0, 0)
|
|
)
|
|
|
|
// Cap represents a disc-shaped region defined by a center and radius.
|
|
// Technically this shape is called a "spherical cap" (rather than disc)
|
|
// because it is not planar; the cap represents a portion of the sphere that
|
|
// has been cut off by a plane. The boundary of the cap is the circle defined
|
|
// by the intersection of the sphere and the plane. For containment purposes,
|
|
// the cap is a closed set, i.e. it contains its boundary.
|
|
//
|
|
// For the most part, you can use a spherical cap wherever you would use a
|
|
// disc in planar geometry. The radius of the cap is measured along the
|
|
// surface of the sphere (rather than the straight-line distance through the
|
|
// interior). Thus a cap of radius π/2 is a hemisphere, and a cap of radius
|
|
// π covers the entire sphere.
|
|
//
|
|
// The center is a point on the surface of the unit sphere. (Hence the need for
|
|
// it to be of unit length.)
|
|
//
|
|
// A cap can also be defined by its center point and height. The height is the
|
|
// distance from the center point to the cutoff plane. There is also support for
|
|
// "empty" and "full" caps, which contain no points and all points respectively.
|
|
//
|
|
// Here are some useful relationships between the cap height (h), the cap
|
|
// radius (r), the maximum chord length from the cap's center (d), and the
|
|
// radius of cap's base (a).
|
|
//
|
|
// h = 1 - cos(r)
|
|
// = 2 * sin^2(r/2)
|
|
// d^2 = 2 * h
|
|
// = a^2 + h^2
|
|
//
|
|
// The zero value of Cap is an invalid cap. Use EmptyCap to get a valid empty cap.
|
|
type Cap struct {
|
|
center Point
|
|
radius s1.ChordAngle
|
|
}
|
|
|
|
// CapFromPoint constructs a cap containing a single point.
|
|
func CapFromPoint(p Point) Cap {
|
|
return CapFromCenterChordAngle(p, 0)
|
|
}
|
|
|
|
// CapFromCenterAngle constructs a cap with the given center and angle.
|
|
func CapFromCenterAngle(center Point, angle s1.Angle) Cap {
|
|
return CapFromCenterChordAngle(center, s1.ChordAngleFromAngle(angle))
|
|
}
|
|
|
|
// CapFromCenterChordAngle constructs a cap where the angle is expressed as an
|
|
// s1.ChordAngle. This constructor is more efficient than using an s1.Angle.
|
|
func CapFromCenterChordAngle(center Point, radius s1.ChordAngle) Cap {
|
|
return Cap{
|
|
center: center,
|
|
radius: radius,
|
|
}
|
|
}
|
|
|
|
// CapFromCenterHeight constructs a cap with the given center and height. A
|
|
// negative height yields an empty cap; a height of 2 or more yields a full cap.
|
|
// The center should be unit length.
|
|
func CapFromCenterHeight(center Point, height float64) Cap {
|
|
return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(2*height))
|
|
}
|
|
|
|
// CapFromCenterArea constructs a cap with the given center and surface area.
|
|
// Note that the area can also be interpreted as the solid angle subtended by the
|
|
// cap (because the sphere has unit radius). A negative area yields an empty cap;
|
|
// an area of 4*π or more yields a full cap.
|
|
func CapFromCenterArea(center Point, area float64) Cap {
|
|
return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(area/math.Pi))
|
|
}
|
|
|
|
// EmptyCap returns a cap that contains no points.
|
|
func EmptyCap() Cap {
|
|
return CapFromCenterChordAngle(centerPoint, s1.NegativeChordAngle)
|
|
}
|
|
|
|
// FullCap returns a cap that contains all points.
|
|
func FullCap() Cap {
|
|
return CapFromCenterChordAngle(centerPoint, s1.StraightChordAngle)
|
|
}
|
|
|
|
// IsValid reports whether the Cap is considered valid.
|
|
func (c Cap) IsValid() bool {
|
|
return c.center.Vector.IsUnit() && c.radius <= s1.StraightChordAngle
|
|
}
|
|
|
|
// IsEmpty reports whether the cap is empty, i.e. it contains no points.
|
|
func (c Cap) IsEmpty() bool {
|
|
return c.radius < 0
|
|
}
|
|
|
|
// IsFull reports whether the cap is full, i.e. it contains all points.
|
|
func (c Cap) IsFull() bool {
|
|
return c.radius == s1.StraightChordAngle
|
|
}
|
|
|
|
// Center returns the cap's center point.
|
|
func (c Cap) Center() Point {
|
|
return c.center
|
|
}
|
|
|
|
// Height returns the height of the cap. This is the distance from the center
|
|
// point to the cutoff plane.
|
|
func (c Cap) Height() float64 {
|
|
return float64(0.5 * c.radius)
|
|
}
|
|
|
|
// Radius returns the cap radius as an s1.Angle. (Note that the cap angle
|
|
// is stored internally as a ChordAngle, so this method requires a trigonometric
|
|
// operation and may yield a slightly different result than the value passed
|
|
// to CapFromCenterAngle).
|
|
func (c Cap) Radius() s1.Angle {
|
|
return c.radius.Angle()
|
|
}
|
|
|
|
// Area returns the surface area of the Cap on the unit sphere.
|
|
func (c Cap) Area() float64 {
|
|
return 2.0 * math.Pi * math.Max(0, c.Height())
|
|
}
|
|
|
|
// Contains reports whether this cap contains the other.
|
|
func (c Cap) Contains(other Cap) bool {
|
|
// In a set containment sense, every cap contains the empty cap.
|
|
if c.IsFull() || other.IsEmpty() {
|
|
return true
|
|
}
|
|
return c.radius >= ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
|
|
}
|
|
|
|
// Intersects reports whether this cap intersects the other cap.
|
|
// i.e. whether they have any points in common.
|
|
func (c Cap) Intersects(other Cap) bool {
|
|
if c.IsEmpty() || other.IsEmpty() {
|
|
return false
|
|
}
|
|
|
|
return c.radius.Add(other.radius) >= ChordAngleBetweenPoints(c.center, other.center)
|
|
}
|
|
|
|
// InteriorIntersects reports whether this caps interior intersects the other cap.
|
|
func (c Cap) InteriorIntersects(other Cap) bool {
|
|
// Make sure this cap has an interior and the other cap is non-empty.
|
|
if c.radius <= 0 || other.IsEmpty() {
|
|
return false
|
|
}
|
|
|
|
return c.radius.Add(other.radius) > ChordAngleBetweenPoints(c.center, other.center)
|
|
}
|
|
|
|
// ContainsPoint reports whether this cap contains the point.
|
|
func (c Cap) ContainsPoint(p Point) bool {
|
|
return ChordAngleBetweenPoints(c.center, p) <= c.radius
|
|
}
|
|
|
|
// InteriorContainsPoint reports whether the point is within the interior of this cap.
|
|
func (c Cap) InteriorContainsPoint(p Point) bool {
|
|
return c.IsFull() || ChordAngleBetweenPoints(c.center, p) < c.radius
|
|
}
|
|
|
|
// Complement returns the complement of the interior of the cap. A cap and its
|
|
// complement have the same boundary but do not share any interior points.
|
|
// The complement operator is not a bijection because the complement of a
|
|
// singleton cap (containing a single point) is the same as the complement
|
|
// of an empty cap.
|
|
func (c Cap) Complement() Cap {
|
|
if c.IsFull() {
|
|
return EmptyCap()
|
|
}
|
|
if c.IsEmpty() {
|
|
return FullCap()
|
|
}
|
|
|
|
return CapFromCenterChordAngle(Point{c.center.Mul(-1)}, s1.StraightChordAngle.Sub(c.radius))
|
|
}
|
|
|
|
// CapBound returns a bounding spherical cap. This is not guaranteed to be exact.
|
|
func (c Cap) CapBound() Cap {
|
|
return c
|
|
}
|
|
|
|
// RectBound returns a bounding latitude-longitude rectangle.
|
|
// The bounds are not guaranteed to be tight.
|
|
func (c Cap) RectBound() Rect {
|
|
if c.IsEmpty() {
|
|
return EmptyRect()
|
|
}
|
|
|
|
capAngle := c.Radius().Radians()
|
|
allLongitudes := false
|
|
lat := r1.Interval{
|
|
Lo: latitude(c.center).Radians() - capAngle,
|
|
Hi: latitude(c.center).Radians() + capAngle,
|
|
}
|
|
lng := s1.FullInterval()
|
|
|
|
// Check whether cap includes the south pole.
|
|
if lat.Lo <= -math.Pi/2 {
|
|
lat.Lo = -math.Pi / 2
|
|
allLongitudes = true
|
|
}
|
|
|
|
// Check whether cap includes the north pole.
|
|
if lat.Hi >= math.Pi/2 {
|
|
lat.Hi = math.Pi / 2
|
|
allLongitudes = true
|
|
}
|
|
|
|
if !allLongitudes {
|
|
// Compute the range of longitudes covered by the cap. We use the law
|
|
// of sines for spherical triangles. Consider the triangle ABC where
|
|
// A is the north pole, B is the center of the cap, and C is the point
|
|
// of tangency between the cap boundary and a line of longitude. Then
|
|
// C is a right angle, and letting a,b,c denote the sides opposite A,B,C,
|
|
// we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c).
|
|
// Here "a" is the cap angle, and "c" is the colatitude (90 degrees
|
|
// minus the latitude). This formula also works for negative latitudes.
|
|
//
|
|
// The formula for sin(a) follows from the relationship h = 1 - cos(a).
|
|
sinA := c.radius.Sin()
|
|
sinC := math.Cos(latitude(c.center).Radians())
|
|
if sinA <= sinC {
|
|
angleA := math.Asin(sinA / sinC)
|
|
lng.Lo = math.Remainder(longitude(c.center).Radians()-angleA, math.Pi*2)
|
|
lng.Hi = math.Remainder(longitude(c.center).Radians()+angleA, math.Pi*2)
|
|
}
|
|
}
|
|
return Rect{lat, lng}
|
|
}
|
|
|
|
// Equal reports whether this cap is equal to the other cap.
|
|
func (c Cap) Equal(other Cap) bool {
|
|
return (c.radius == other.radius && c.center == other.center) ||
|
|
(c.IsEmpty() && other.IsEmpty()) ||
|
|
(c.IsFull() && other.IsFull())
|
|
}
|
|
|
|
// ApproxEqual reports whether this cap is equal to the other cap within the given tolerance.
|
|
func (c Cap) ApproxEqual(other Cap) bool {
|
|
const epsilon = 1e-14
|
|
r2 := float64(c.radius)
|
|
otherR2 := float64(other.radius)
|
|
return c.center.ApproxEqual(other.center) &&
|
|
math.Abs(r2-otherR2) <= epsilon ||
|
|
c.IsEmpty() && otherR2 <= epsilon ||
|
|
other.IsEmpty() && r2 <= epsilon ||
|
|
c.IsFull() && otherR2 >= 2-epsilon ||
|
|
other.IsFull() && r2 >= 2-epsilon
|
|
}
|
|
|
|
// AddPoint increases the cap if necessary to include the given point. If this cap is empty,
|
|
// then the center is set to the point with a zero height. p must be unit-length.
|
|
func (c Cap) AddPoint(p Point) Cap {
|
|
if c.IsEmpty() {
|
|
c.center = p
|
|
c.radius = 0
|
|
return c
|
|
}
|
|
|
|
// After calling cap.AddPoint(p), cap.Contains(p) must be true. However
|
|
// we don't need to do anything special to achieve this because Contains()
|
|
// does exactly the same distance calculation that we do here.
|
|
if newRad := ChordAngleBetweenPoints(c.center, p); newRad > c.radius {
|
|
c.radius = newRad
|
|
}
|
|
return c
|
|
}
|
|
|
|
// AddCap increases the cap height if necessary to include the other cap. If this cap is empty,
|
|
// it is set to the other cap.
|
|
func (c Cap) AddCap(other Cap) Cap {
|
|
if c.IsEmpty() {
|
|
return other
|
|
}
|
|
if other.IsEmpty() {
|
|
return c
|
|
}
|
|
|
|
// We round up the distance to ensure that the cap is actually contained.
|
|
// TODO(roberts): Do some error analysis in order to guarantee this.
|
|
dist := ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
|
|
if newRad := dist.Expanded(dblEpsilon * float64(dist)); newRad > c.radius {
|
|
c.radius = newRad
|
|
}
|
|
return c
|
|
}
|
|
|
|
// Expanded returns a new cap expanded by the given angle. If the cap is empty,
|
|
// it returns an empty cap.
|
|
func (c Cap) Expanded(distance s1.Angle) Cap {
|
|
if c.IsEmpty() {
|
|
return EmptyCap()
|
|
}
|
|
return CapFromCenterChordAngle(c.center, c.radius.Add(s1.ChordAngleFromAngle(distance)))
|
|
}
|
|
|
|
func (c Cap) String() string {
|
|
return fmt.Sprintf("[Center=%v, Radius=%f]", c.center.Vector, c.Radius().Degrees())
|
|
}
|
|
|
|
// radiusToHeight converts an s1.Angle into the height of the cap.
|
|
func radiusToHeight(r s1.Angle) float64 {
|
|
if r.Radians() < 0 {
|
|
return float64(s1.NegativeChordAngle)
|
|
}
|
|
if r.Radians() >= math.Pi {
|
|
return float64(s1.RightChordAngle)
|
|
}
|
|
return float64(0.5 * s1.ChordAngleFromAngle(r))
|
|
|
|
}
|
|
|
|
// ContainsCell reports whether the cap contains the given cell.
|
|
func (c Cap) ContainsCell(cell Cell) bool {
|
|
// If the cap does not contain all cell vertices, return false.
|
|
var vertices [4]Point
|
|
for k := 0; k < 4; k++ {
|
|
vertices[k] = cell.Vertex(k)
|
|
if !c.ContainsPoint(vertices[k]) {
|
|
return false
|
|
}
|
|
}
|
|
// Otherwise, return true if the complement of the cap does not intersect the cell.
|
|
return !c.Complement().intersects(cell, vertices)
|
|
}
|
|
|
|
// IntersectsCell reports whether the cap intersects the cell.
|
|
func (c Cap) IntersectsCell(cell Cell) bool {
|
|
// If the cap contains any cell vertex, return true.
|
|
var vertices [4]Point
|
|
for k := 0; k < 4; k++ {
|
|
vertices[k] = cell.Vertex(k)
|
|
if c.ContainsPoint(vertices[k]) {
|
|
return true
|
|
}
|
|
}
|
|
return c.intersects(cell, vertices)
|
|
}
|
|
|
|
// intersects reports whether the cap intersects any point of the cell excluding
|
|
// its vertices (which are assumed to already have been checked).
|
|
func (c Cap) intersects(cell Cell, vertices [4]Point) bool {
|
|
// If the cap is a hemisphere or larger, the cell and the complement of the cap
|
|
// are both convex. Therefore since no vertex of the cell is contained, no other
|
|
// interior point of the cell is contained either.
|
|
if c.radius >= s1.RightChordAngle {
|
|
return false
|
|
}
|
|
|
|
// We need to check for empty caps due to the center check just below.
|
|
if c.IsEmpty() {
|
|
return false
|
|
}
|
|
|
|
// Optimization: return true if the cell contains the cap center. This allows half
|
|
// of the edge checks below to be skipped.
|
|
if cell.ContainsPoint(c.center) {
|
|
return true
|
|
}
|
|
|
|
// At this point we know that the cell does not contain the cap center, and the cap
|
|
// does not contain any cell vertex. The only way that they can intersect is if the
|
|
// cap intersects the interior of some edge.
|
|
sin2Angle := c.radius.Sin2()
|
|
for k := 0; k < 4; k++ {
|
|
edge := cell.Edge(k).Vector
|
|
dot := c.center.Vector.Dot(edge)
|
|
if dot > 0 {
|
|
// The center is in the interior half-space defined by the edge. We do not need
|
|
// to consider these edges, since if the cap intersects this edge then it also
|
|
// intersects the edge on the opposite side of the cell, because the center is
|
|
// not contained with the cell.
|
|
continue
|
|
}
|
|
|
|
// The Norm2() factor is necessary because "edge" is not normalized.
|
|
if dot*dot > sin2Angle*edge.Norm2() {
|
|
return false
|
|
}
|
|
|
|
// Otherwise, the great circle containing this edge intersects the interior of the cap. We just
|
|
// need to check whether the point of closest approach occurs between the two edge endpoints.
|
|
dir := edge.Cross(c.center.Vector)
|
|
if dir.Dot(vertices[k].Vector) < 0 && dir.Dot(vertices[(k+1)&3].Vector) > 0 {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// CellUnionBound computes a covering of the Cap. In general the covering
|
|
// consists of at most 4 cells except for very large caps, which may need
|
|
// up to 6 cells. The output is not sorted.
|
|
func (c Cap) CellUnionBound() []CellID {
|
|
// TODO(roberts): The covering could be made quite a bit tighter by mapping
|
|
// the cap to a rectangle in (i,j)-space and finding a covering for that.
|
|
|
|
// Find the maximum level such that the cap contains at most one cell vertex
|
|
// and such that CellID.AppendVertexNeighbors() can be called.
|
|
level := MinWidthMetric.MaxLevel(c.Radius().Radians()) - 1
|
|
|
|
// If level < 0, more than three face cells are required.
|
|
if level < 0 {
|
|
cellIDs := make([]CellID, 6)
|
|
for face := 0; face < 6; face++ {
|
|
cellIDs[face] = CellIDFromFace(face)
|
|
}
|
|
return cellIDs
|
|
}
|
|
// The covering consists of the 4 cells at the given level that share the
|
|
// cell vertex that is closest to the cap center.
|
|
return cellIDFromPoint(c.center).VertexNeighbors(level)
|
|
}
|
|
|
|
// Centroid returns the true centroid of the cap multiplied by its surface area
|
|
// The result lies on the ray from the origin through the cap's center, but it
|
|
// is not unit length. Note that if you just want the "surface centroid", i.e.
|
|
// the normalized result, then it is simpler to call Center.
|
|
//
|
|
// The reason for multiplying the result by the cap area is to make it
|
|
// easier to compute the centroid of more complicated shapes. The centroid
|
|
// of a union of disjoint regions can be computed simply by adding their
|
|
// Centroid() results. Caveat: for caps that contain a single point
|
|
// (i.e., zero radius), this method always returns the origin (0, 0, 0).
|
|
// This is because shapes with no area don't affect the centroid of a
|
|
// union whose total area is positive.
|
|
func (c Cap) Centroid() Point {
|
|
// From symmetry, the centroid of the cap must be somewhere on the line
|
|
// from the origin to the center of the cap on the surface of the sphere.
|
|
// When a sphere is divided into slices of constant thickness by a set of
|
|
// parallel planes, all slices have the same surface area. This implies
|
|
// that the radial component of the centroid is simply the midpoint of the
|
|
// range of radial distances spanned by the cap. That is easily computed
|
|
// from the cap height.
|
|
if c.IsEmpty() {
|
|
return Point{}
|
|
}
|
|
r := 1 - 0.5*c.Height()
|
|
return Point{c.center.Mul(r * c.Area())}
|
|
}
|
|
|
|
// Union returns the smallest cap which encloses this cap and other.
|
|
func (c Cap) Union(other Cap) Cap {
|
|
// If the other cap is larger, swap c and other for the rest of the computations.
|
|
if c.radius < other.radius {
|
|
c, other = other, c
|
|
}
|
|
|
|
if c.IsFull() || other.IsEmpty() {
|
|
return c
|
|
}
|
|
|
|
// TODO: This calculation would be more efficient using s1.ChordAngles.
|
|
cRadius := c.Radius()
|
|
otherRadius := other.Radius()
|
|
distance := c.center.Distance(other.center)
|
|
if cRadius >= distance+otherRadius {
|
|
return c
|
|
}
|
|
|
|
resRadius := 0.5 * (distance + cRadius + otherRadius)
|
|
resCenter := InterpolateAtDistance(0.5*(distance-cRadius+otherRadius), c.center, other.center)
|
|
return CapFromCenterAngle(resCenter, resRadius)
|
|
}
|
|
|
|
// Encode encodes the Cap.
|
|
func (c Cap) Encode(w io.Writer) error {
|
|
e := &encoder{w: w}
|
|
c.encode(e)
|
|
return e.err
|
|
}
|
|
|
|
func (c Cap) encode(e *encoder) {
|
|
e.writeFloat64(c.center.X)
|
|
e.writeFloat64(c.center.Y)
|
|
e.writeFloat64(c.center.Z)
|
|
e.writeFloat64(float64(c.radius))
|
|
}
|
|
|
|
// Decode decodes the Cap.
|
|
func (c *Cap) Decode(r io.Reader) error {
|
|
d := &decoder{r: asByteReader(r)}
|
|
c.decode(d)
|
|
return d.err
|
|
}
|
|
|
|
func (c *Cap) decode(d *decoder) {
|
|
c.center.X = d.readFloat64()
|
|
c.center.Y = d.readFloat64()
|
|
c.center.Z = d.readFloat64()
|
|
c.radius = s1.ChordAngle(d.readFloat64())
|
|
}
|