mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-01-10 08:30:14 +00:00
98263a7de6
* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
199 lines
5.4 KiB
Go
199 lines
5.4 KiB
Go
// Copyright 2016 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package r3
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
)
|
|
|
|
const (
|
|
// prec is the number of bits of precision to use for the Float values.
|
|
// To keep things simple, we use the maximum allowable precision on big
|
|
// values. This allows us to handle all values we expect in the s2 library.
|
|
prec = big.MaxPrec
|
|
)
|
|
|
|
// define some commonly referenced values.
|
|
var (
|
|
precise0 = precInt(0)
|
|
precise1 = precInt(1)
|
|
)
|
|
|
|
// precStr wraps the conversion from a string into a big.Float. For results that
|
|
// actually can be represented exactly, this should only be used on values that
|
|
// are integer multiples of integer powers of 2.
|
|
func precStr(s string) *big.Float {
|
|
// Explicitly ignoring the bool return for this usage.
|
|
f, _ := new(big.Float).SetPrec(prec).SetString(s)
|
|
return f
|
|
}
|
|
|
|
func precInt(i int64) *big.Float {
|
|
return new(big.Float).SetPrec(prec).SetInt64(i)
|
|
}
|
|
|
|
func precFloat(f float64) *big.Float {
|
|
return new(big.Float).SetPrec(prec).SetFloat64(f)
|
|
}
|
|
|
|
func precAdd(a, b *big.Float) *big.Float {
|
|
return new(big.Float).SetPrec(prec).Add(a, b)
|
|
}
|
|
|
|
func precSub(a, b *big.Float) *big.Float {
|
|
return new(big.Float).SetPrec(prec).Sub(a, b)
|
|
}
|
|
|
|
func precMul(a, b *big.Float) *big.Float {
|
|
return new(big.Float).SetPrec(prec).Mul(a, b)
|
|
}
|
|
|
|
// PreciseVector represents a point in ℝ³ using high-precision values.
|
|
// Note that this is NOT a complete implementation because there are some
|
|
// operations that Vector supports that are not feasible with arbitrary precision
|
|
// math. (e.g., methods that need division like Normalize, or methods needing a
|
|
// square root operation such as Norm)
|
|
type PreciseVector struct {
|
|
X, Y, Z *big.Float
|
|
}
|
|
|
|
// PreciseVectorFromVector creates a high precision vector from the given Vector.
|
|
func PreciseVectorFromVector(v Vector) PreciseVector {
|
|
return NewPreciseVector(v.X, v.Y, v.Z)
|
|
}
|
|
|
|
// NewPreciseVector creates a high precision vector from the given floating point values.
|
|
func NewPreciseVector(x, y, z float64) PreciseVector {
|
|
return PreciseVector{
|
|
X: precFloat(x),
|
|
Y: precFloat(y),
|
|
Z: precFloat(z),
|
|
}
|
|
}
|
|
|
|
// Vector returns this precise vector converted to a Vector.
|
|
func (v PreciseVector) Vector() Vector {
|
|
// The accuracy flag is ignored on these conversions back to float64.
|
|
x, _ := v.X.Float64()
|
|
y, _ := v.Y.Float64()
|
|
z, _ := v.Z.Float64()
|
|
return Vector{x, y, z}.Normalize()
|
|
}
|
|
|
|
// Equal reports whether v and ov are equal.
|
|
func (v PreciseVector) Equal(ov PreciseVector) bool {
|
|
return v.X.Cmp(ov.X) == 0 && v.Y.Cmp(ov.Y) == 0 && v.Z.Cmp(ov.Z) == 0
|
|
}
|
|
|
|
func (v PreciseVector) String() string {
|
|
return fmt.Sprintf("(%10g, %10g, %10g)", v.X, v.Y, v.Z)
|
|
}
|
|
|
|
// Norm2 returns the square of the norm.
|
|
func (v PreciseVector) Norm2() *big.Float { return v.Dot(v) }
|
|
|
|
// IsUnit reports whether this vector is of unit length.
|
|
func (v PreciseVector) IsUnit() bool {
|
|
return v.Norm2().Cmp(precise1) == 0
|
|
}
|
|
|
|
// Abs returns the vector with nonnegative components.
|
|
func (v PreciseVector) Abs() PreciseVector {
|
|
return PreciseVector{
|
|
X: new(big.Float).Abs(v.X),
|
|
Y: new(big.Float).Abs(v.Y),
|
|
Z: new(big.Float).Abs(v.Z),
|
|
}
|
|
}
|
|
|
|
// Add returns the standard vector sum of v and ov.
|
|
func (v PreciseVector) Add(ov PreciseVector) PreciseVector {
|
|
return PreciseVector{
|
|
X: precAdd(v.X, ov.X),
|
|
Y: precAdd(v.Y, ov.Y),
|
|
Z: precAdd(v.Z, ov.Z),
|
|
}
|
|
}
|
|
|
|
// Sub returns the standard vector difference of v and ov.
|
|
func (v PreciseVector) Sub(ov PreciseVector) PreciseVector {
|
|
return PreciseVector{
|
|
X: precSub(v.X, ov.X),
|
|
Y: precSub(v.Y, ov.Y),
|
|
Z: precSub(v.Z, ov.Z),
|
|
}
|
|
}
|
|
|
|
// Mul returns the standard scalar product of v and f.
|
|
func (v PreciseVector) Mul(f *big.Float) PreciseVector {
|
|
return PreciseVector{
|
|
X: precMul(v.X, f),
|
|
Y: precMul(v.Y, f),
|
|
Z: precMul(v.Z, f),
|
|
}
|
|
}
|
|
|
|
// MulByFloat64 returns the standard scalar product of v and f.
|
|
func (v PreciseVector) MulByFloat64(f float64) PreciseVector {
|
|
return v.Mul(precFloat(f))
|
|
}
|
|
|
|
// Dot returns the standard dot product of v and ov.
|
|
func (v PreciseVector) Dot(ov PreciseVector) *big.Float {
|
|
return precAdd(precMul(v.X, ov.X), precAdd(precMul(v.Y, ov.Y), precMul(v.Z, ov.Z)))
|
|
}
|
|
|
|
// Cross returns the standard cross product of v and ov.
|
|
func (v PreciseVector) Cross(ov PreciseVector) PreciseVector {
|
|
return PreciseVector{
|
|
X: precSub(precMul(v.Y, ov.Z), precMul(v.Z, ov.Y)),
|
|
Y: precSub(precMul(v.Z, ov.X), precMul(v.X, ov.Z)),
|
|
Z: precSub(precMul(v.X, ov.Y), precMul(v.Y, ov.X)),
|
|
}
|
|
}
|
|
|
|
// LargestComponent returns the axis that represents the largest component in this vector.
|
|
func (v PreciseVector) LargestComponent() Axis {
|
|
t := v.Abs()
|
|
|
|
if t.X.Cmp(t.Y) > 0 {
|
|
if t.X.Cmp(t.Z) > 0 {
|
|
return XAxis
|
|
}
|
|
return ZAxis
|
|
}
|
|
if t.Y.Cmp(t.Z) > 0 {
|
|
return YAxis
|
|
}
|
|
return ZAxis
|
|
}
|
|
|
|
// SmallestComponent returns the axis that represents the smallest component in this vector.
|
|
func (v PreciseVector) SmallestComponent() Axis {
|
|
t := v.Abs()
|
|
|
|
if t.X.Cmp(t.Y) < 0 {
|
|
if t.X.Cmp(t.Z) < 0 {
|
|
return XAxis
|
|
}
|
|
return ZAxis
|
|
}
|
|
if t.Y.Cmp(t.Z) < 0 {
|
|
return YAxis
|
|
}
|
|
return ZAxis
|
|
}
|