mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-27 14:16:39 +00:00
1124 lines
30 KiB
Go
1124 lines
30 KiB
Go
// Copyright 2019+ Klaus Post. All rights reserved.
|
|
// License information can be found in the LICENSE file.
|
|
// Based on work by Yann Collet, released under BSD License.
|
|
|
|
package zstd
|
|
|
|
import "fmt"
|
|
|
|
const (
|
|
dFastLongTableBits = 17 // Bits used in the long match table
|
|
dFastLongTableSize = 1 << dFastLongTableBits // Size of the table
|
|
dFastLongTableMask = dFastLongTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
|
|
dFastLongLen = 8 // Bytes used for table hash
|
|
|
|
dLongTableShardCnt = 1 << (dFastLongTableBits - dictShardBits) // Number of shards in the table
|
|
dLongTableShardSize = dFastLongTableSize / tableShardCnt // Size of an individual shard
|
|
|
|
dFastShortTableBits = tableBits // Bits used in the short match table
|
|
dFastShortTableSize = 1 << dFastShortTableBits // Size of the table
|
|
dFastShortTableMask = dFastShortTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
|
|
dFastShortLen = 5 // Bytes used for table hash
|
|
|
|
)
|
|
|
|
type doubleFastEncoder struct {
|
|
fastEncoder
|
|
longTable [dFastLongTableSize]tableEntry
|
|
}
|
|
|
|
type doubleFastEncoderDict struct {
|
|
fastEncoderDict
|
|
longTable [dFastLongTableSize]tableEntry
|
|
dictLongTable []tableEntry
|
|
longTableShardDirty [dLongTableShardCnt]bool
|
|
}
|
|
|
|
// Encode mimmics functionality in zstd_dfast.c
|
|
func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) {
|
|
const (
|
|
// Input margin is the number of bytes we read (8)
|
|
// and the maximum we will read ahead (2)
|
|
inputMargin = 8 + 2
|
|
minNonLiteralBlockSize = 16
|
|
)
|
|
|
|
// Protect against e.cur wraparound.
|
|
for e.cur >= e.bufferReset-int32(len(e.hist)) {
|
|
if len(e.hist) == 0 {
|
|
e.table = [dFastShortTableSize]tableEntry{}
|
|
e.longTable = [dFastLongTableSize]tableEntry{}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
// Shift down everything in the table that isn't already too far away.
|
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
|
|
for i := range e.table[:] {
|
|
v := e.table[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.table[i].offset = v
|
|
}
|
|
for i := range e.longTable[:] {
|
|
v := e.longTable[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.longTable[i].offset = v
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
|
|
s := e.addBlock(src)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Override src
|
|
src = e.hist
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 1.
|
|
const stepSize = 1
|
|
|
|
const kSearchStrength = 8
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
var t int32
|
|
// We allow the encoder to optionally turn off repeat offsets across blocks
|
|
canRepeat := len(blk.sequences) > 2
|
|
|
|
for {
|
|
if debugAsserts && canRepeat && offset1 == 0 {
|
|
panic("offset0 was 0")
|
|
}
|
|
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
|
|
candidateL := e.longTable[nextHashL]
|
|
candidateS := e.table[nextHashS]
|
|
|
|
const repOff = 1
|
|
repIndex := s - offset1 + repOff
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.table[nextHashS] = entry
|
|
|
|
if canRepeat {
|
|
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
|
|
|
|
seq.matchLen = uint32(lenght - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + repOff
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += lenght + repOff
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, lenght)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
}
|
|
// Find the offsets of our two matches.
|
|
coffsetL := s - (candidateL.offset - e.cur)
|
|
coffsetS := s - (candidateS.offset - e.cur)
|
|
|
|
// Check if we have a long match.
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugMatches {
|
|
println("long match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// Check if we have a short match.
|
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
|
|
// found a regular match
|
|
// See if we can find a long match at s+1
|
|
const checkAt = 1
|
|
cv := load6432(src, s+checkAt)
|
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
candidateL = e.longTable[nextHashL]
|
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt
|
|
|
|
// We can store it, since we have at least a 4 byte match.
|
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
s += checkAt
|
|
if debugMatches {
|
|
println("long match (after short)")
|
|
}
|
|
break
|
|
}
|
|
|
|
t = candidateS.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
if debugMatches {
|
|
println("short match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// No match found, move forward in input.
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
|
|
// A 4-byte match has been found. Update recent offsets.
|
|
// We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) {
|
|
panic("invalid offset")
|
|
}
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
l := e.matchlen(s+4, t+4, src) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
|
|
// Index match start+1 (long) and start+2 (short)
|
|
index0 := s - l + 1
|
|
// Index match end-2 (long) and end-1 (short)
|
|
index1 := s - 2
|
|
|
|
cv0 := load6432(src, index0)
|
|
cv1 := load6432(src, index1)
|
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
|
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
|
|
e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0
|
|
e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1
|
|
cv0 >>= 8
|
|
cv1 >>= 8
|
|
te0.offset++
|
|
te1.offset++
|
|
te0.val = uint32(cv0)
|
|
te1.val = uint32(cv1)
|
|
e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0
|
|
e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1
|
|
|
|
cv = load6432(src, s)
|
|
|
|
if !canRepeat {
|
|
continue
|
|
}
|
|
|
|
// Check offset 2
|
|
for {
|
|
o2 := s - offset2
|
|
if load3232(src, o2) != uint32(cv) {
|
|
// Do regular search
|
|
break
|
|
}
|
|
|
|
// Store this, since we have it.
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
l := 4 + e.matchlen(s+4, o2+4, src)
|
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.table[nextHashS] = entry
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
// Finished
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
blk.recentOffsets[0] = uint32(offset1)
|
|
blk.recentOffsets[1] = uint32(offset2)
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
}
|
|
|
|
// EncodeNoHist will encode a block with no history and no following blocks.
|
|
// Most notable difference is that src will not be copied for history and
|
|
// we do not need to check for max match length.
|
|
func (e *doubleFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
|
|
const (
|
|
// Input margin is the number of bytes we read (8)
|
|
// and the maximum we will read ahead (2)
|
|
inputMargin = 8 + 2
|
|
minNonLiteralBlockSize = 16
|
|
)
|
|
|
|
// Protect against e.cur wraparound.
|
|
if e.cur >= e.bufferReset {
|
|
for i := range e.table[:] {
|
|
e.table[i] = tableEntry{}
|
|
}
|
|
for i := range e.longTable[:] {
|
|
e.longTable[i] = tableEntry{}
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
}
|
|
|
|
s := int32(0)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Override src
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 1.
|
|
const stepSize = 1
|
|
|
|
const kSearchStrength = 8
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
var t int32
|
|
for {
|
|
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
|
|
candidateL := e.longTable[nextHashL]
|
|
candidateS := e.table[nextHashS]
|
|
|
|
const repOff = 1
|
|
repIndex := s - offset1 + repOff
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.table[nextHashS] = entry
|
|
|
|
if len(blk.sequences) > 2 {
|
|
if load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
//length := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
|
|
length := 4 + int32(matchLen(src[s+4+repOff:], src[repIndex+4:]))
|
|
|
|
seq.matchLen = uint32(length - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + repOff
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += length + repOff
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, length)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
}
|
|
// Find the offsets of our two matches.
|
|
coffsetL := s - (candidateL.offset - e.cur)
|
|
coffsetS := s - (candidateS.offset - e.cur)
|
|
|
|
// Check if we have a long match.
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d). cur: %d", s, t, e.cur))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugMatches {
|
|
println("long match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// Check if we have a short match.
|
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
|
|
// found a regular match
|
|
// See if we can find a long match at s+1
|
|
const checkAt = 1
|
|
cv := load6432(src, s+checkAt)
|
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
candidateL = e.longTable[nextHashL]
|
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt
|
|
|
|
// We can store it, since we have at least a 4 byte match.
|
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
s += checkAt
|
|
if debugMatches {
|
|
println("long match (after short)")
|
|
}
|
|
break
|
|
}
|
|
|
|
t = candidateS.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
if debugMatches {
|
|
println("short match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// No match found, move forward in input.
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
|
|
// A 4-byte match has been found. Update recent offsets.
|
|
// We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
//l := e.matchlen(s+4, t+4, src) + 4
|
|
l := int32(matchLen(src[s+4:], src[t+4:])) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
|
|
// Index match start+1 (long) and start+2 (short)
|
|
index0 := s - l + 1
|
|
// Index match end-2 (long) and end-1 (short)
|
|
index1 := s - 2
|
|
|
|
cv0 := load6432(src, index0)
|
|
cv1 := load6432(src, index1)
|
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
|
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
|
|
e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0
|
|
e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1
|
|
cv0 >>= 8
|
|
cv1 >>= 8
|
|
te0.offset++
|
|
te1.offset++
|
|
te0.val = uint32(cv0)
|
|
te1.val = uint32(cv1)
|
|
e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0
|
|
e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1
|
|
|
|
cv = load6432(src, s)
|
|
|
|
if len(blk.sequences) <= 2 {
|
|
continue
|
|
}
|
|
|
|
// Check offset 2
|
|
for {
|
|
o2 := s - offset2
|
|
if load3232(src, o2) != uint32(cv) {
|
|
// Do regular search
|
|
break
|
|
}
|
|
|
|
// Store this, since we have it.
|
|
nextHashS := hashLen(cv1>>8, dFastShortTableBits, dFastShortLen)
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
//l := 4 + e.matchlen(s+4, o2+4, src)
|
|
l := 4 + int32(matchLen(src[s+4:], src[o2+4:]))
|
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.table[nextHashS] = entry
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
// Finished
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
|
|
// We do not store history, so we must offset e.cur to avoid false matches for next user.
|
|
if e.cur < e.bufferReset {
|
|
e.cur += int32(len(src))
|
|
}
|
|
}
|
|
|
|
// Encode will encode the content, with a dictionary if initialized for it.
|
|
func (e *doubleFastEncoderDict) Encode(blk *blockEnc, src []byte) {
|
|
const (
|
|
// Input margin is the number of bytes we read (8)
|
|
// and the maximum we will read ahead (2)
|
|
inputMargin = 8 + 2
|
|
minNonLiteralBlockSize = 16
|
|
)
|
|
|
|
// Protect against e.cur wraparound.
|
|
for e.cur >= e.bufferReset-int32(len(e.hist)) {
|
|
if len(e.hist) == 0 {
|
|
for i := range e.table[:] {
|
|
e.table[i] = tableEntry{}
|
|
}
|
|
for i := range e.longTable[:] {
|
|
e.longTable[i] = tableEntry{}
|
|
}
|
|
e.markAllShardsDirty()
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
// Shift down everything in the table that isn't already too far away.
|
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
|
|
for i := range e.table[:] {
|
|
v := e.table[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.table[i].offset = v
|
|
}
|
|
for i := range e.longTable[:] {
|
|
v := e.longTable[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.longTable[i].offset = v
|
|
}
|
|
e.markAllShardsDirty()
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
|
|
s := e.addBlock(src)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Override src
|
|
src = e.hist
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 1.
|
|
const stepSize = 1
|
|
|
|
const kSearchStrength = 8
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
var t int32
|
|
// We allow the encoder to optionally turn off repeat offsets across blocks
|
|
canRepeat := len(blk.sequences) > 2
|
|
|
|
for {
|
|
if debugAsserts && canRepeat && offset1 == 0 {
|
|
panic("offset0 was 0")
|
|
}
|
|
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
|
|
candidateL := e.longTable[nextHashL]
|
|
candidateS := e.table[nextHashS]
|
|
|
|
const repOff = 1
|
|
repIndex := s - offset1 + repOff
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.markLongShardDirty(nextHashL)
|
|
e.table[nextHashS] = entry
|
|
e.markShardDirty(nextHashS)
|
|
|
|
if canRepeat {
|
|
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
|
|
|
|
seq.matchLen = uint32(lenght - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + repOff
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += lenght + repOff
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, lenght)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
}
|
|
// Find the offsets of our two matches.
|
|
coffsetL := s - (candidateL.offset - e.cur)
|
|
coffsetS := s - (candidateS.offset - e.cur)
|
|
|
|
// Check if we have a long match.
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugMatches {
|
|
println("long match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// Check if we have a short match.
|
|
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
|
|
// found a regular match
|
|
// See if we can find a long match at s+1
|
|
const checkAt = 1
|
|
cv := load6432(src, s+checkAt)
|
|
nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
candidateL = e.longTable[nextHashL]
|
|
coffsetL = s - (candidateL.offset - e.cur) + checkAt
|
|
|
|
// We can store it, since we have at least a 4 byte match.
|
|
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
|
|
e.markLongShardDirty(nextHashL)
|
|
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
|
|
// Found a long match, likely at least 8 bytes.
|
|
// Reference encoder checks all 8 bytes, we only check 4,
|
|
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
|
|
t = candidateL.offset - e.cur
|
|
s += checkAt
|
|
if debugMatches {
|
|
println("long match (after short)")
|
|
}
|
|
break
|
|
}
|
|
|
|
t = candidateS.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
if debugMatches {
|
|
println("short match")
|
|
}
|
|
break
|
|
}
|
|
|
|
// No match found, move forward in input.
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
|
|
// A 4-byte match has been found. Update recent offsets.
|
|
// We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) {
|
|
panic("invalid offset")
|
|
}
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
l := e.matchlen(s+4, t+4, src) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
|
|
// Index match start+1 (long) and start+2 (short)
|
|
index0 := s - l + 1
|
|
// Index match end-2 (long) and end-1 (short)
|
|
index1 := s - 2
|
|
|
|
cv0 := load6432(src, index0)
|
|
cv1 := load6432(src, index1)
|
|
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
|
|
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
|
|
longHash1 := hashLen(cv0, dFastLongTableBits, dFastLongLen)
|
|
longHash2 := hashLen(cv1, dFastLongTableBits, dFastLongLen)
|
|
e.longTable[longHash1] = te0
|
|
e.longTable[longHash2] = te1
|
|
e.markLongShardDirty(longHash1)
|
|
e.markLongShardDirty(longHash2)
|
|
cv0 >>= 8
|
|
cv1 >>= 8
|
|
te0.offset++
|
|
te1.offset++
|
|
te0.val = uint32(cv0)
|
|
te1.val = uint32(cv1)
|
|
hashVal1 := hashLen(cv0, dFastShortTableBits, dFastShortLen)
|
|
hashVal2 := hashLen(cv1, dFastShortTableBits, dFastShortLen)
|
|
e.table[hashVal1] = te0
|
|
e.markShardDirty(hashVal1)
|
|
e.table[hashVal2] = te1
|
|
e.markShardDirty(hashVal2)
|
|
|
|
cv = load6432(src, s)
|
|
|
|
if !canRepeat {
|
|
continue
|
|
}
|
|
|
|
// Check offset 2
|
|
for {
|
|
o2 := s - offset2
|
|
if load3232(src, o2) != uint32(cv) {
|
|
// Do regular search
|
|
break
|
|
}
|
|
|
|
// Store this, since we have it.
|
|
nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen)
|
|
nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen)
|
|
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
l := 4 + e.matchlen(s+4, o2+4, src)
|
|
|
|
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.longTable[nextHashL] = entry
|
|
e.markLongShardDirty(nextHashL)
|
|
e.table[nextHashS] = entry
|
|
e.markShardDirty(nextHashS)
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
// Finished
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
blk.recentOffsets[0] = uint32(offset1)
|
|
blk.recentOffsets[1] = uint32(offset2)
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
// If we encoded more than 64K mark all dirty.
|
|
if len(src) > 64<<10 {
|
|
e.markAllShardsDirty()
|
|
}
|
|
}
|
|
|
|
// ResetDict will reset and set a dictionary if not nil
|
|
func (e *doubleFastEncoder) Reset(d *dict, singleBlock bool) {
|
|
e.fastEncoder.Reset(d, singleBlock)
|
|
if d != nil {
|
|
panic("doubleFastEncoder: Reset with dict not supported")
|
|
}
|
|
}
|
|
|
|
// ResetDict will reset and set a dictionary if not nil
|
|
func (e *doubleFastEncoderDict) Reset(d *dict, singleBlock bool) {
|
|
allDirty := e.allDirty
|
|
e.fastEncoderDict.Reset(d, singleBlock)
|
|
if d == nil {
|
|
return
|
|
}
|
|
|
|
// Init or copy dict table
|
|
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID {
|
|
if len(e.dictLongTable) != len(e.longTable) {
|
|
e.dictLongTable = make([]tableEntry, len(e.longTable))
|
|
}
|
|
if len(d.content) >= 8 {
|
|
cv := load6432(d.content, 0)
|
|
e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{
|
|
val: uint32(cv),
|
|
offset: e.maxMatchOff,
|
|
}
|
|
end := int32(len(d.content)) - 8 + e.maxMatchOff
|
|
for i := e.maxMatchOff + 1; i < end; i++ {
|
|
cv = cv>>8 | (uint64(d.content[i-e.maxMatchOff+7]) << 56)
|
|
e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{
|
|
val: uint32(cv),
|
|
offset: i,
|
|
}
|
|
}
|
|
}
|
|
e.lastDictID = d.id
|
|
allDirty = true
|
|
}
|
|
// Reset table to initial state
|
|
e.cur = e.maxMatchOff
|
|
|
|
dirtyShardCnt := 0
|
|
if !allDirty {
|
|
for i := range e.longTableShardDirty {
|
|
if e.longTableShardDirty[i] {
|
|
dirtyShardCnt++
|
|
}
|
|
}
|
|
}
|
|
|
|
if allDirty || dirtyShardCnt > dLongTableShardCnt/2 {
|
|
//copy(e.longTable[:], e.dictLongTable)
|
|
e.longTable = *(*[dFastLongTableSize]tableEntry)(e.dictLongTable)
|
|
for i := range e.longTableShardDirty {
|
|
e.longTableShardDirty[i] = false
|
|
}
|
|
return
|
|
}
|
|
for i := range e.longTableShardDirty {
|
|
if !e.longTableShardDirty[i] {
|
|
continue
|
|
}
|
|
|
|
// copy(e.longTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize], e.dictLongTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize])
|
|
*(*[dLongTableShardSize]tableEntry)(e.longTable[i*dLongTableShardSize:]) = *(*[dLongTableShardSize]tableEntry)(e.dictLongTable[i*dLongTableShardSize:])
|
|
|
|
e.longTableShardDirty[i] = false
|
|
}
|
|
}
|
|
|
|
func (e *doubleFastEncoderDict) markLongShardDirty(entryNum uint32) {
|
|
e.longTableShardDirty[entryNum/dLongTableShardSize] = true
|
|
}
|