mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-27 06:06:38 +00:00
9d0df426da
* feat: vendor minio client * feat: introduce storage package with s3 support * feat: serve s3 files directly this saves a lot of bandwith as the files are fetched from the object store directly * fix: use explicit local storage in tests * feat: integrate s3 storage with the main server * fix: add s3 config to cli tests * docs: explicitly set values in example config also adds license header to the storage package * fix: use better http status code on s3 redirect HTTP 302 Found is the best fit, as it signifies that the resource requested was found but not under its presumed URL 307/TemporaryRedirect would mean that this resource is usually located here, not in this case 303/SeeOther indicates that the redirection does not link to the requested resource but to another page * refactor: use context in storage driver interface
284 lines
9.2 KiB
Go
284 lines
9.2 KiB
Go
// Copyright 2017 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package argon2 implements the key derivation function Argon2.
|
|
// Argon2 was selected as the winner of the Password Hashing Competition and can
|
|
// be used to derive cryptographic keys from passwords.
|
|
//
|
|
// For a detailed specification of Argon2 see [1].
|
|
//
|
|
// If you aren't sure which function you need, use Argon2id (IDKey) and
|
|
// the parameter recommendations for your scenario.
|
|
//
|
|
// # Argon2i
|
|
//
|
|
// Argon2i (implemented by Key) is the side-channel resistant version of Argon2.
|
|
// It uses data-independent memory access, which is preferred for password
|
|
// hashing and password-based key derivation. Argon2i requires more passes over
|
|
// memory than Argon2id to protect from trade-off attacks. The recommended
|
|
// parameters (taken from [2]) for non-interactive operations are time=3 and to
|
|
// use the maximum available memory.
|
|
//
|
|
// # Argon2id
|
|
//
|
|
// Argon2id (implemented by IDKey) is a hybrid version of Argon2 combining
|
|
// Argon2i and Argon2d. It uses data-independent memory access for the first
|
|
// half of the first iteration over the memory and data-dependent memory access
|
|
// for the rest. Argon2id is side-channel resistant and provides better brute-
|
|
// force cost savings due to time-memory tradeoffs than Argon2i. The recommended
|
|
// parameters for non-interactive operations (taken from [2]) are time=1 and to
|
|
// use the maximum available memory.
|
|
//
|
|
// [1] https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
|
|
// [2] https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03#section-9.3
|
|
package argon2
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"sync"
|
|
|
|
"golang.org/x/crypto/blake2b"
|
|
)
|
|
|
|
// The Argon2 version implemented by this package.
|
|
const Version = 0x13
|
|
|
|
const (
|
|
argon2d = iota
|
|
argon2i
|
|
argon2id
|
|
)
|
|
|
|
// Key derives a key from the password, salt, and cost parameters using Argon2i
|
|
// returning a byte slice of length keyLen that can be used as cryptographic
|
|
// key. The CPU cost and parallelism degree must be greater than zero.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// key := argon2.Key([]byte("some password"), salt, 3, 32*1024, 4, 32)
|
|
//
|
|
// The draft RFC recommends[2] time=3, and memory=32*1024 is a sensible number.
|
|
// If using that amount of memory (32 MB) is not possible in some contexts then
|
|
// the time parameter can be increased to compensate.
|
|
//
|
|
// The time parameter specifies the number of passes over the memory and the
|
|
// memory parameter specifies the size of the memory in KiB. For example
|
|
// memory=32*1024 sets the memory cost to ~32 MB. The number of threads can be
|
|
// adjusted to the number of available CPUs. The cost parameters should be
|
|
// increased as memory latency and CPU parallelism increases. Remember to get a
|
|
// good random salt.
|
|
func Key(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
return deriveKey(argon2i, password, salt, nil, nil, time, memory, threads, keyLen)
|
|
}
|
|
|
|
// IDKey derives a key from the password, salt, and cost parameters using
|
|
// Argon2id returning a byte slice of length keyLen that can be used as
|
|
// cryptographic key. The CPU cost and parallelism degree must be greater than
|
|
// zero.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// key := argon2.IDKey([]byte("some password"), salt, 1, 64*1024, 4, 32)
|
|
//
|
|
// The draft RFC recommends[2] time=1, and memory=64*1024 is a sensible number.
|
|
// If using that amount of memory (64 MB) is not possible in some contexts then
|
|
// the time parameter can be increased to compensate.
|
|
//
|
|
// The time parameter specifies the number of passes over the memory and the
|
|
// memory parameter specifies the size of the memory in KiB. For example
|
|
// memory=64*1024 sets the memory cost to ~64 MB. The number of threads can be
|
|
// adjusted to the numbers of available CPUs. The cost parameters should be
|
|
// increased as memory latency and CPU parallelism increases. Remember to get a
|
|
// good random salt.
|
|
func IDKey(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
return deriveKey(argon2id, password, salt, nil, nil, time, memory, threads, keyLen)
|
|
}
|
|
|
|
func deriveKey(mode int, password, salt, secret, data []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
if time < 1 {
|
|
panic("argon2: number of rounds too small")
|
|
}
|
|
if threads < 1 {
|
|
panic("argon2: parallelism degree too low")
|
|
}
|
|
h0 := initHash(password, salt, secret, data, time, memory, uint32(threads), keyLen, mode)
|
|
|
|
memory = memory / (syncPoints * uint32(threads)) * (syncPoints * uint32(threads))
|
|
if memory < 2*syncPoints*uint32(threads) {
|
|
memory = 2 * syncPoints * uint32(threads)
|
|
}
|
|
B := initBlocks(&h0, memory, uint32(threads))
|
|
processBlocks(B, time, memory, uint32(threads), mode)
|
|
return extractKey(B, memory, uint32(threads), keyLen)
|
|
}
|
|
|
|
const (
|
|
blockLength = 128
|
|
syncPoints = 4
|
|
)
|
|
|
|
type block [blockLength]uint64
|
|
|
|
func initHash(password, salt, key, data []byte, time, memory, threads, keyLen uint32, mode int) [blake2b.Size + 8]byte {
|
|
var (
|
|
h0 [blake2b.Size + 8]byte
|
|
params [24]byte
|
|
tmp [4]byte
|
|
)
|
|
|
|
b2, _ := blake2b.New512(nil)
|
|
binary.LittleEndian.PutUint32(params[0:4], threads)
|
|
binary.LittleEndian.PutUint32(params[4:8], keyLen)
|
|
binary.LittleEndian.PutUint32(params[8:12], memory)
|
|
binary.LittleEndian.PutUint32(params[12:16], time)
|
|
binary.LittleEndian.PutUint32(params[16:20], uint32(Version))
|
|
binary.LittleEndian.PutUint32(params[20:24], uint32(mode))
|
|
b2.Write(params[:])
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(password)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(password)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(salt)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(salt)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(key)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(key)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(data)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(data)
|
|
b2.Sum(h0[:0])
|
|
return h0
|
|
}
|
|
|
|
func initBlocks(h0 *[blake2b.Size + 8]byte, memory, threads uint32) []block {
|
|
var block0 [1024]byte
|
|
B := make([]block, memory)
|
|
for lane := uint32(0); lane < threads; lane++ {
|
|
j := lane * (memory / threads)
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size+4:], lane)
|
|
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 0)
|
|
blake2bHash(block0[:], h0[:])
|
|
for i := range B[j+0] {
|
|
B[j+0][i] = binary.LittleEndian.Uint64(block0[i*8:])
|
|
}
|
|
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 1)
|
|
blake2bHash(block0[:], h0[:])
|
|
for i := range B[j+1] {
|
|
B[j+1][i] = binary.LittleEndian.Uint64(block0[i*8:])
|
|
}
|
|
}
|
|
return B
|
|
}
|
|
|
|
func processBlocks(B []block, time, memory, threads uint32, mode int) {
|
|
lanes := memory / threads
|
|
segments := lanes / syncPoints
|
|
|
|
processSegment := func(n, slice, lane uint32, wg *sync.WaitGroup) {
|
|
var addresses, in, zero block
|
|
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
|
|
in[0] = uint64(n)
|
|
in[1] = uint64(lane)
|
|
in[2] = uint64(slice)
|
|
in[3] = uint64(memory)
|
|
in[4] = uint64(time)
|
|
in[5] = uint64(mode)
|
|
}
|
|
|
|
index := uint32(0)
|
|
if n == 0 && slice == 0 {
|
|
index = 2 // we have already generated the first two blocks
|
|
if mode == argon2i || mode == argon2id {
|
|
in[6]++
|
|
processBlock(&addresses, &in, &zero)
|
|
processBlock(&addresses, &addresses, &zero)
|
|
}
|
|
}
|
|
|
|
offset := lane*lanes + slice*segments + index
|
|
var random uint64
|
|
for index < segments {
|
|
prev := offset - 1
|
|
if index == 0 && slice == 0 {
|
|
prev += lanes // last block in lane
|
|
}
|
|
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
|
|
if index%blockLength == 0 {
|
|
in[6]++
|
|
processBlock(&addresses, &in, &zero)
|
|
processBlock(&addresses, &addresses, &zero)
|
|
}
|
|
random = addresses[index%blockLength]
|
|
} else {
|
|
random = B[prev][0]
|
|
}
|
|
newOffset := indexAlpha(random, lanes, segments, threads, n, slice, lane, index)
|
|
processBlockXOR(&B[offset], &B[prev], &B[newOffset])
|
|
index, offset = index+1, offset+1
|
|
}
|
|
wg.Done()
|
|
}
|
|
|
|
for n := uint32(0); n < time; n++ {
|
|
for slice := uint32(0); slice < syncPoints; slice++ {
|
|
var wg sync.WaitGroup
|
|
for lane := uint32(0); lane < threads; lane++ {
|
|
wg.Add(1)
|
|
go processSegment(n, slice, lane, &wg)
|
|
}
|
|
wg.Wait()
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
func extractKey(B []block, memory, threads, keyLen uint32) []byte {
|
|
lanes := memory / threads
|
|
for lane := uint32(0); lane < threads-1; lane++ {
|
|
for i, v := range B[(lane*lanes)+lanes-1] {
|
|
B[memory-1][i] ^= v
|
|
}
|
|
}
|
|
|
|
var block [1024]byte
|
|
for i, v := range B[memory-1] {
|
|
binary.LittleEndian.PutUint64(block[i*8:], v)
|
|
}
|
|
key := make([]byte, keyLen)
|
|
blake2bHash(key, block[:])
|
|
return key
|
|
}
|
|
|
|
func indexAlpha(rand uint64, lanes, segments, threads, n, slice, lane, index uint32) uint32 {
|
|
refLane := uint32(rand>>32) % threads
|
|
if n == 0 && slice == 0 {
|
|
refLane = lane
|
|
}
|
|
m, s := 3*segments, ((slice+1)%syncPoints)*segments
|
|
if lane == refLane {
|
|
m += index
|
|
}
|
|
if n == 0 {
|
|
m, s = slice*segments, 0
|
|
if slice == 0 || lane == refLane {
|
|
m += index
|
|
}
|
|
}
|
|
if index == 0 || lane == refLane {
|
|
m--
|
|
}
|
|
return phi(rand, uint64(m), uint64(s), refLane, lanes)
|
|
}
|
|
|
|
func phi(rand, m, s uint64, lane, lanes uint32) uint32 {
|
|
p := rand & 0xFFFFFFFF
|
|
p = (p * p) >> 32
|
|
p = (p * m) >> 32
|
|
return lane*lanes + uint32((s+m-(p+1))%uint64(lanes))
|
|
}
|